cosa=x/√(x²+y²)
过程:
cosa=x/r
r=√(x²+y²)
所以cosa=x/√(x²+y²)
担心手机不显示平方符号,格式
sin(α+β)=sinαcosβ+cosαsinβ;
sin(α-β)=sinαcosβ-cosαsinβ;
cos(α+β)=cosαcosβ-sinαsinβ;
cos(α-β)=cosαcosβ+sinαsinβ。
常用公式
口诀;奇变偶不变,符号看象限
一般的最常用公式有:
Sin(A+B)=SinACosB+SinBCosA
Sin(A-B)=SinACosB-SinBCosA
Cos(A+B)=CosACosB-SinASinB
Cos(A-B)=CosACosB+SinASinB
Tan(A+B)=(TanA+TanB)/(1-TanATanB)
Tan(A-B)=(TanA-TanB)/(1+TanATanB)
sinaX的导数是cosaX。
相关介绍:
导数(Derivative)也叫导函数值,又名微商,是微积分学中重要的基础概念,是函数的局部性质。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。
几何意义:
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
cosax一cosbx和差化积
=-2sin((a+b)x/2)sin((a-b)x/2)
无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。
扩展资料和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
根号下1-X2 的原函数½(arcsinx+x√(1-x²))
令x=sint,-π/2≤t≤π/2∫√(1-x²)=∫costd(sint)=∫cos²tdt=½∫(1+cos2t)dt=½(t+½sin2t)+C=½(arcsinx+x√(1-x²))+C对½(arcsinx+x√(1-x²))求导就得到根号1-x²。
已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
例如:sinx是cosx的原函数。
扩展资料:
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
故若函数f(x)有原函数,那么其原函数为无穷多个。
例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。
例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
欢迎分享,转载请注明来源:品搜搜测评网