如图所示:
非初等,这是误差函数。
高斯函数的不定积分是误差函数。在自然科学、社会科学、数学以及工程学等领域都有高斯函数的身影,这方面的例子包括:
在统计学与机率论中,高斯函数是常态分布的密度函数,根据中心极限定理它是复杂总和的有限机率分布。
高斯函数是量子谐振子基态的波函数。
扩展资料:
许多二重积分仅仅依靠直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为:
在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,可得到二重积分在极坐标下的表达式:
-二重积分
分别对x、y、z求偏导数后转化为一个三重积分后有,3∫∫∫ydxdydz 积分域为实心立方体。 到此可以直接用直角坐标积分这个三重积分得出结果。但是本人这里使用一个对称技巧。
3∫∫∫ydxdydz=3∫∫∫[(y-1/2)+1/2] dxdydz =3∫∫∫(y-1/2) dxdydz +3∫∫∫(1/2) dxdydz =0 + 3∫∫∫(1/2) dxdydz =(3/2)×1 =3/2(1为这个单位立方体体积。
注意∫∫∫(y-1/2) dxdydz 因为这个立方体关于平面y-1/2=0对称,且y-1/2=0为奇次方,所以积分值为0)。
扩展资料:
高斯公式介绍:
1、基本概念:
首先,我们来看一下什么是高斯公式。
有一个定理如下:
设空间闭区域Ω是由分片光滑的闭曲面Σ所围成,函数P(x,y,z)、Q(x,y,z)、R(x,y,z)在Ω上具有一阶连续偏导数,则有
或
这里Σ是Ω的整个边界曲面的外侧,cos α、cos β、cosγ 是Σ在点(x,y,z)处的法向量的方向余弦。其中的两个公式均叫做高斯公式。
2 应用:
在计算曲面积分时,可以利用高斯公式把曲面积分化成三重积分。
在应用时需要注意定理的适用条件。定理中有三个关键词:围成、具有一阶连续偏导数、外侧。在使用时,注意以下几点:
(1)先看看积分域是不是一个闭区域,如果不是,那么就需要补个面(一般是平面)。
(2)注意闭区域(无论是否是补面之后形成的)内是否在∂P/∂x、∂Q/∂y和∂R/∂z处连续(即奇点),如果是奇点,还需要用补面来把奇点去掉。
(3)注意题目给定曲面的侧,到底是内侧还是外侧。
下图可以简明地列出这几个点:
补面①一般是补平面,补面②一般是球面、椭球面、半球面、半椭球面等。灵活运用就可以了。
首先高斯公式要求积分曲面是闭曲面,所以先取球面∑和三个坐标平面xoy,yoz,xoz组成闭曲面∑‘,注意在这三个坐标平面上,分别有x=y=0,y=z=0,z=x=0,因此被积函数xyz在这三个平面上的积分都等于0,故xyz在∑上的积分等于在∑’上的积分根据高斯公式,P=Q=0,R=xyz,R'z=xy,故在∑‘上的积分=∫∫∫xydxdydz,积分区域为x^2+y^2+z^2=1和三个坐标平面在第一卦限内所围的立体用球坐标计算这三重积分,由于x=rsinφcosθ,y=rsinΦsinθ,积分=∫sinθcosθdθ∫(sinφ)^3dφ∫r^4dr(其中r积分限0到1,φ和θ的积分限都是0到π/2),计算后等于1/15
欢迎分享,转载请注明来源:品搜搜测评网