矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分
它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。是研究场的重要公式之一。
公式为: ∮FdS=∫△Fdv 注:△--应为倒三角(由于符号输入的关系,打成正立三角形)即是哈密顿算符 F、S为矢量
高斯定理在物理学研究方面,应用非常广泛。
如:电场E为电荷q(原点处)在真空中产生的静电场,求原点外M(x,y,z)处的散度divE(M)
解:div(qR/(4πr^3)=0 R/r--为r的单位矢量,
本例说明静电场E是无源场。
应用高斯定理(或散度定理)求静电场或非静电场非常方便。特别是求静电场中的场强,在普通物理学中常用,这里就再举二例。
现在用高斯公式推导普通物理中的高斯定理,
设S内有一点电荷Q其电场过面积元dS的通量为
E·dS=Ecosθds
=Q/(4πε0r^2) cosθds θ为(ds^r) ε0----真空中的 介电常数
显然cosθds为面元投影到以r为半径的球面的面积,在球体内,面元dS对电荷Q所张的立体角为dΩ= cosθds/r^2
故 E·ds= Q/(4πε0)dΩ
因此,E对闭合曲面S的通量为∮E·dS=Q/(4πε0) ∮dΩ=Q/ε0
场强学过普通物理的多数人都知道
下面用高斯公式来推导电荷守恒定律,设空间区域V,边界为封闭面S,通过界面流出的电流应等于体积V内电量的减小率,
即∮J·dS=-∫(dρ/dt)dV J,S ---矢量, dρ/dt--------- 这里为ρ对的偏导数(由于符号在这里用d来代替偏导的符号)
ρ-电荷密度
注:J=Ρv’ V’---为速度矢量
用高斯公式进行积分变换,
∮J·dS=∫△·JdV :△--应为倒三角(由于输入的关系,打成正立三角形) ,
可得到电荷守恒定律的微分形式:△·J+ dρ/dt=0,
此式称电流的连续性方程。
高斯函数公式:f(x)=dad。高斯函数以大数学家约翰·卡尔·弗里德里希·高斯的名字命名。高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
成像公式,即透镜成像公式、高斯成像公式,其形式为1/f=1/u+1/v。其中f为焦距,凸正凹负;u为物距;v为像距,实正虚负。
凸透镜的成像规律是1/u+1/v=1/f(即:物距的倒数与像距的倒数之和等于焦距的倒数。)一共有两种推导方法 。分别为“几何法”与“函数法”,这里说一下几何法。
几何法
题如图1 ,用几何法证明1/u+1/v=1/f。
解∵△ABO∽△A'B'O
∴AB:A'B'=u:v
∵△COF∽△A'B'F
∴CO:A'B'=f:(v-f)
∵四边形ABOC为矩形
∴AB=CO
∴AB:A'B'=f:(v-f)
∴u:v=f:(v-f)
∴u(v-f)=vf
∴uv-uf=vf
∵uvf≠0
∴(uv/uvf)-(uf/uvf)=vf/uvf
∴1/f-1/v=1/u
即:1/u+1/v=1/f
高斯公式又叫高斯定理、或散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式: 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 高斯公式投影性质
它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。是研究场的重要公式之一。
公式为: ∮FdS=∫△Fdv ,高斯公式又叫高斯定理(或散度定理): 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。
设空间有界闭合区域Ω,其边界əΩ为分片光滑闭曲面。函数P(x,y,z),Q(x,y,z)R(x,y,z)及其一阶偏导数在Ω上连续,那么
或记作:
其中əΩ的正侧为外侧,cosα,cosβ,cosγ为əΩ的外法向量的方向余弦。
即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分。它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式,也是研究场的重要公式之一。
扩展资料:
由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。
静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;
而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。
欢迎分享,转载请注明来源:品搜搜测评网