由题意得:铱元素(Ir)的原子核外电子数目为77;在原子中,原子序数=质子数=核外电子数=77;
A、铱原子的质子数为77,故A正确;
B、因为相对原子质量=质子数+中子数,中子数=192-77=115,则中子数与质子数差为115-77=38,故B正确;
C、化学变化中原子守恒,铱-192是在核反应堆中照射含有铱-191和铱-193的铱丝、圆片或大块而得到的,原子发生变化,不是化学变化,故C错误;
D、铱-192与铱-191、铱-193质子数相同质子数不同,是同种元素的不同原子互为同位素,故D正确;
故选C.
想知道世界上和宇宙中最坚硬的东西是什么吗怀着好奇的心,我们为大家总结,让你大开眼界!一般决定硬度的最根本的条件是物体的密度。
第一、世界上最坚硬的东西排行榜:
1、铱金属。 是最耐腐蚀的金属,铱对酸的化学稳定性极高,不溶于酸,只有海绵状的铱才会缓慢地溶于热王水中,如果是致密状态的铱,即使是沸腾的王水,也不能腐蚀铱;稍受熔融的氢氧化钠、氢氧化钾和重铬酸钠的侵蚀。一般的腐蚀剂都不能腐蚀铱。有形成配位化合物得强烈倾向。主要化合价+2、+4、+6。
纯铱专门用在飞机火花塞中,多用于制作科学仪器、热电偶、电阻线以及钢笔尖等。做合金用,可以增强其他金属得硬度和抗腐蚀性。纯净的铱多用于合金,铱虽然有单独使用,但这样的情况比较少,单独以致密金属状的形式出现的形态一般作为锭状,坩埚,或者丝状。将铱加工成丝状的成本高,使得铱丝的市场售价高达每克1000元左右,所以铱经常以合金形式出现,它与铂形成得合金(10%的Ir和90%的Pt),因膨胀系数极小,常用来制造国际标准米尺,世界上的千克原器也是由铂铱合金制作的。
2、氮化碳 是一种硬度可以和金刚石相媲美而在自然界中尚未发现的新的共价化合物。1989年理论上预言其结构,1993年在实验室合成成功。1993年7月,美国哈佛大学传出轰动性的科技新闻:利用激光溅射技术研制成功氮化碳薄膜。分析表明,新材料具有β—C3N4结构,而具有这种结构的晶体硬度将超过目前世界上最硬的金刚石晶体,成为首屈一指的超硬新材料。
3、金刚石。 金刚石俗称“金刚钻”。也就是我们常说的钻石,它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质之一。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。碳可以在高温、高压下形成金刚石。人类对金刚石的认识和开发具有悠久的历史。早在公元前3世纪古印度就发现了金刚石。自公元纪年起至今,钻石一直是国家与王宫贵族、达官显贵的财富、权势、地位的象征。
第二、宇宙中最坚硬的东西:
1、中子星。 又名波霎,是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一。简而言之,即质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于恒星和黑洞的星体,其密度比地球上任何物质密度大相当多倍。
中子星是除黑洞外密度最大的星体,同黑洞一样是20世纪激动人心的重大发现,为人类探索自然开辟了新的领域,而且对现代物理学的发展产生了深远影响,成为上世纪60年代天文学的四大发现之一。中子星的密度为10的11次方千克/立方厘米, 也就是每立方厘米的质量竟为一亿吨之巨!是水的密度的一百万亿倍。对比起白矮星的几十吨/立方厘米,后者似乎又不值一提了。如果把地球压缩成这样,地球的直径将只有22米!事实上,中子星的质量是如此之大,半径十公里的中子星的质量就与太阳的质量相当了,金刚石的硬度在其面前甚至还不如鸡蛋碰石头中的鸡蛋!!
2、黑洞。 宇宙空间内存在的一种超高质量天体,由于类似热力学上完全不反射光线的黑体,故名为黑洞。黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而“死亡”后,发生引力坍缩产生的。黑洞的质量极其巨大,而体积却十分微小,它产生的引力场极为强劲,以致于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无力逃脱,就连传播速度最快的光(电磁波)也逃逸不出。
宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,大约100万~100亿个太阳质量。天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。
因为黑洞的密度极其巨大,甚至比中子星还要强悍,因此黑洞的是宇宙中最坚硬的物质。硬到你无法想象!!
一光学镀膜材料(纯度:999%-999999%)
1 高纯氧化物:
一氧化硅、SiO,二氧化铪、HfO2,二硼化铪,氯氧化铪,二氧化锆、ZrO2,二氧化钛、TiO2,一氧化钛、TiO,二氧化硅、SiO2,三氧化二钛、Ti2O3,五氧化三钛、Ti3O5,五氧化二钽、Ta2O5,五氧化二铌、Nb2O5,三氧化二铝、Al2O3,三氧化二钪、Sc2O3,三氧化二铟、In2O3,二钛酸镨、Pr(TiO3)2,二氧化铈、CeO2,氧化镁、MgO,三氧化钨、WO3,氧化钐、Sm2O3,氧化钕、Nd2O3,氧化铋、Bi2O3,氧化镨、Pr6O11,氧化锑、Sb2O3,氧化钒、V2O5,氧化镍、NiO,氧化锌、ZnO,氧化铁、Fe2O3,氧化铬、Cr2O3,氧化铜、CuO等。
2 高纯氟化物:
氟化镁、MgF2,氟化镱、YbF3,氟化钇、LaF3,氟化镝、DyF3,氟化钕、NdF3,氟化铒、ErF3,氟化钾、KF,氟化锶、SrF3,氟化钐、SmF3,氟化钠、NaF,氟化钡、BaF2,氟化铈、CeF3,氟化铅等。
4 混合料:
氧化锆氧化钛混合料,氧化锆氧化钽混合料,氧化钛氧化钽混合料,氧化锆氧化钇混合料,氧化钛氧化铌混合料,氧化锆氧化铝混合料,氧化镁氧化铝混合料,氧化铟氧化锡混合料,氧化锡氧化铟混合料,氟化铈氟化钙混合料等混合料
3 高纯金属类:
高纯铝,高纯铝丝,高纯铝粒,高纯铝片,高纯铝柱,高纯铬粒,高纯铬粉,铬条,高纯金丝,高纯金片,高纯金,高纯金粒,高纯银丝,高纯银粒,高纯银,高纯银片,高纯铂丝,高纯铪粉,高纯铪丝,高纯铪粒,高纯钨粒,高纯钼粒,高纯单晶硅,高纯多晶硅,高纯锗粒,,高纯锰粒,高纯钴,高纯钴粒,高纯钼,高纯钼片,高纯铌,高纯锡粒,高纯锡丝,高纯钨粒,高纯锌粒,高纯钒粒,高纯铁粒,高纯铁粉,海面钛,高纯锆丝,高纯锆,海绵锆,碘化锆,高纯锆粒,高纯锆块,高纯碲粒,高纯锗粒, 高纯钛片,高纯钛粒,高纯镍,高纯镍丝,高纯镍片,高纯镍柱,高纯钽片,高纯钽,高纯钽丝,高纯钽粒,高纯镍铬丝,高纯镍铬粒,高纯镧,高纯镨,高纯钆,高纯铈,高纯铽,高纯钬,高纯钇,高纯镱,高纯铥,高纯铼,高纯铑,高纯钯,高纯铱等
5 其他化合物:
钛酸钡,BaTiO3,钛酸镨,PrTiO3,钛酸锶,SrTiO3,钛酸镧,LaTiO3,硫化锌,ZnS,冰晶石,Na3AlF6,硒化锌,ZnSe,硫化镉。
6 辅料:
钼片,钼舟、钽片、钨片、钨舟、钨绞丝。
二、溅射靶材(纯度:999%-99999%)
1 金属靶材:
1 金属靶材:
镍靶、Ni、钛靶、Ti、锌靶、Zn、铬靶、Cr、镁靶、Mg、铌靶、Nb、锡靶、Sn、铝靶、Al、铟靶、In、铁靶、Fe、锆铝靶、ZrAl、钛铝靶、TiAl、锆靶、Zr、铝硅靶、AlSi、硅靶、Si、铜靶Cu、钽靶T、a、锗靶、Ge、银靶、Ag、钴靶、Co、金靶、Au、钆靶、Gd、镧靶、La、钇靶、Y、铈靶、Ce、钨靶、w、不锈钢靶、镍铬靶、NiCr、铪靶、Hf、钼靶、Mo、铁镍靶、FeNi、钨靶、W等。
2 陶瓷靶材
ITO靶、氧化镁靶、氧化铁靶、氮化硅靶、碳化硅靶、氮化钛靶、氧化铬靶、氧化锌靶、硫化锌靶、二氧化硅靶、一氧化硅靶、氧化铈靶、二氧化锆靶、五氧化二铌靶、二氧化钛靶、二氧化锆靶,、二氧化铪靶,二硼化钛靶,二硼化锆靶,三氧化钨靶,三氧化二铝靶五氧化二钽,五氧化二铌靶、氟化镁靶、氟化钇靶、硒化锌靶、氮化铝靶,氮化硅靶,氮化硼靶,氮化钛靶,碳化硅靶,铌酸锂靶、钛酸镨靶、钛酸钡靶、钛酸镧靶、氧化镍靶、溅射靶材等。
打开电离规管之前真空度需要降到2pa的原因是强行打开电离规管会损害电离的测量的氧化铱丝。真空计测量是从大气到E0pa、E一pa。而电离规管真空计测量的真空度是从0,-2-3等更高真空度。电离规管真空度未降到2pa强行打开电离规管会损害电离的测量的氧化铱丝。
世界上最坚硬的东西和宇宙中最坚硬的东西
想知道世界上和宇宙中最坚硬的东西是什么吗??怀着好奇的心,我们为大家总结,让你大开眼界!一般决定硬度的最根本的条件是物体的密度。
第一、世界上最坚硬的东西排行榜:
1、铱金属。是最耐腐蚀的金属,铱对酸的化学稳定性极高,不溶于酸,只有海绵状的铱才会缓慢地溶于热王水中,如果是致密状态的铱,即使是沸腾的王水,也不能腐蚀铱;稍受熔融的氢氧化钠、氢氧化钾和重铬酸钠的侵蚀。一般的腐蚀剂都不能腐蚀铱。有形成配位化合物得强烈倾向。主要化合价+2、+4、+6。
纯铱专门用在飞机火花塞中,多用于制作科学仪器、热电偶、电阻线以及钢笔尖等。做合金用,可以增强其他金属得硬度和抗腐蚀性。纯净的铱多用于合金,铱虽然有单独使用,但这样的情况比较少,单独以致密金属状的形式出现的形态一般作为锭状,坩埚,或者丝状。将铱加工成丝状的成本高,使得铱丝的市场售价高达每克1000元左右,所以铱经常以合金形式出现,它与铂形成得合金(10%的Ir和90%的Pt),因膨胀系数极小,常用来制造国际标准米尺,世界上的千克原器也是由铂铱合金制作的。
铱金属
2、氮化碳是一种硬度可以和金刚石相媲美而在自然界中尚未发现的新的共价化合物。1989年理论上预言其结构,1993年在实验室合成成功。1993年7月,美国哈佛大学传出轰动性的科技新闻:利用激光溅射技术研制成功氮化碳薄膜。分析表明,新材料具有β—C3N4结构,而具有这种结构的晶体硬度将超过目前世界上最硬的金刚石晶体,成为首屈一指的超硬新材料。
氮化碳
3、金刚石。金刚石俗称“金刚钻”。也就是我们常说的钻石,它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质之一。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。碳可以在高温、高压下形成金刚石。人类对金刚石的认识和开发具有悠久的历史。早在公元前3世纪古印度就发现了金刚石。自公元纪年起至今,钻石一直是国家与王宫贵族、达官显贵的财富、权势、地位的象征。
金刚石
第二、宇宙中最坚硬的东西:
1、中子星。又名波霎,是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一。简而言之,即质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于恒星和黑洞的星体,其密度比地球上任何物质密度大相当多倍。
中子星是除黑洞外密度最大的星体,同黑洞一样是20世纪激动人心的重大发现,为人类探索自然开辟了新的领域,而且对现代物理学的发展产生了深远影响,成为上世纪60年代天文学的四大发现之一。中子星的密度为10的11次方千克/立方厘米, 也就是每立方厘米的质量竟为一亿吨之巨!是水的密度的一百万亿倍。对比起白矮星的几十吨/立方厘米,后者似乎又不值一提了。如果把地球压缩成这样,地球的直径将只有22米!事实上,中子星的质量是如此之大,半径十公里的中子星的质量就与太阳的质量相当了,金刚石的硬度在其面前甚至还不如鸡蛋碰石头中的鸡蛋!!
中子星
2、黑洞。宇宙空间内存在的一种超高质量天体,由于类似热力学上完全不反射光线的黑体,故名为黑洞。黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而“死亡”后,发生引力坍缩产生的。黑洞的质量极其巨大,而体积却十分微小,它产生的引力场极为强劲,以致于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无力逃脱,就连传播速度最快的光(电磁波)也逃逸不出。
宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,大约100万~100亿个太阳质量。天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。
因为黑洞的密度极其巨大,甚至比中子星还要强悍,因此黑洞的是宇宙中最坚硬的物质。硬到你无法想象!!
黑洞,宇宙中最坚硬的东西
人工耳蜗由体内和体外两部分装置组成。
1体内装置:包括接收电路和电极。接收电路的核心部分是一块大规模集成电路芯片,封装在一个比5分硬币略大的陶瓷或钛合金密封外壳中,以防止体液对电路的侵袭。电极由长约26毫米,直径06毫米的铂铱丝及硅橡胶制成,一端与电路连接,另一端通过手术植入耳蜗内。所用材料与人体组织具有良好的相容性,从理论上讲可终生使用。
2体外部分叫做言语处理器,有体配式和耳背式两种。体配式如香烟盒大小,可挂在腰带上;耳背式与耳背式助听器相似,用电池提供能源。内装话筒、言语信号编码电路板及发射装置。
人工耳蜗的工作原理是对位于耳蜗内、功能尚完好的听神经施加脉冲电刺激。大多数人工耳蜗设备由植入部分和体外部分组成。体外部分由麦克风、语音处理器以及用于向植入部分发送指令的信号发射器组成。植入部分由信号接收及解码模块、刺激电极阵列组成。从而刺激听神经纤维兴奋并将声音信息传入大脑,产生听觉。
热偶真空计测量是从大气到E0Pa或者是E一Pa。
而电离真空计测量的真空度是从0, -2-3或更高真空度。
如果真空度未达到电离开启数值,强行打开电离会损害电离的测量的氧化铱丝。
但是现在一些高端的真空计,本身有对应的电源保护。
欢迎分享,转载请注明来源:品搜搜测评网