求数学王子高斯的简介。

求数学王子高斯的简介。,第1张

高斯(Carl Friedrich Gauss,1777~1855)1777年4月30日出生于德国不伦瑞克的一个贫苦农民家庭。幼时家境贫苦,聪敏异常,受一贵族资助才进入学校受教育。1795~1798年在哥廷根大学学习,1799年获得博士学位,1807年开始任哥廷根大学数学教授和天文台台长,1833年和物理学家韦伯共同建立地磁观测台,组织磁学学会以联系全世界的地磁台站网。1855年2月23日在哥廷根逝世,终年78岁。

  

  数学神童

  高斯从小就是数学神童,具有惊人的记忆力和心算技巧。3岁已能纠正父亲计算上的错误,11岁发现二项式定理,19岁发明用圆规和直尺作正17边形的作图法。后来对超几何级数、复变函数、统计数学和椭圆函数论都有重大贡献。是一名当之无愧的数学天才。

  关于高斯的神思巧算有许多有趣的故事。

  大约距今200多年前的一天,在德国不伦瑞克的一所农村小学里,一位算术老师正在给学生们上课。这位从城里来的教师自命清高,他认为跑这么远的路来教一群乡下笨孩子真是大材小用。因此,感到一肚子委屈的他常常无缘无故地发脾气,动不动就训斥鞭打学生。孩子们见了他就像老鼠见了猫似地怕得不得了。

  这天,算术老师心情不好,拉长着脸走进教室,下命令似地对学生们说:“今天,你们给我算1加2,加3,加4,…一直加到100的和,谁算不好就不准回家吃饭。”说完,他像凶像恶煞似地瞪着眼睛看了孩子们一圈,然后坐到椅子上闭目养神。孩子们又怕又急,赶忙拿出石板算了起来:1+2=3,3+3=6,6+4=10,10+5=15,…唉,这道题可真难做,从1加到100这要做到什么时候才算完呀?

  正当大家在石板上擦了算,算了擦,忙个不停时,只见一个男孩子站了起来,手拿石板走到老师跟前小声说道:“老师,我算好了,答数是不是这个?”算术老师头都没抬,挥挥手说:“去!去!去!这么快就算好了,肯定是错的!”这孩子站着不动,他再把小石板往前一送,“老师,您看看吧,我想这个答数是对的。”算术老师正想发作一通,可是抬头一望却大吃一惊,那石板上端端正正地写着数字“5050”。这个答案他自己事先算过是对的,不过,他为了算这道题也花了好些时间,这9岁的孩子怎么这么快就算出来了,他有点惊奇地问道:“你是怎么算出来的?”

  “老师,我不是按1加2再加3的次序一个一个往上加的,我仔细看了一下算式,发现这个100个加数里,一头一尾两个数相加都是101,您看,1+100=101,2+99=101,3+98=101,…最后,50+51=101。这样,一共有50个101,用50乘101就是5050了。”

  “啊呀!我怎么就没有想到?”算术老师惊讶地对这个学生刮目相看。确实,他受到极大的震动,想不到乡下小孩里还有这么聪明的人。要知道这孩子应用的方法就是数学家们经过长期研究才找到的“等差级数求和”的方法呀。从此,这位老师像换了个人似地,认真备课,认真上课,对学生的态度也大为改进了,尤其是对这个聪明的孩子,他更是热情帮助,精心指点,把他引上了热爱数学的道路。

这个聪明的孩子就是高斯,1777年4月30日他出生在德国不伦瑞克一个贫苦农民的家里。他的祖父是农民,父亲是打短工的,后来在小杂货铺当伙计,母亲是石匠的女儿。可以这样说,高斯家祖祖辈辈都没什么文化。但是,高斯却十分喜爱读书学习,并从小就表现出特别的数学才能。有一次,他父亲忙着替老板年终结算小杂货铺几个帮工的工资,算得满头大汗才得出总数是多少。突然,4岁的高斯小声向他指出总数算错了,他吃了一惊,赶忙仔细再全部核对一遍,发现自己确实算错了。真奇怪,谁也没有教过小高斯的算术,他是从哪儿学来的呢?高斯后来回忆起童年的事说,他在学会说话之前已经学会计算了。的确,这位数学神童是有点数学天才的。

  1788年,小学毕业的高斯由于古典文学成绩优异,而跳级被录取为文科中学的二年级学生,后来又升到哲学班去学习。在18世纪时,中学的哲学班有点像我们今天的尖子班,那里都是成绩优秀的学生。不过,父母却为高斯能不能进入大学深造而发愁,因为他们太穷了,哪里交得起昂贵的大学学费。的确,高斯家很穷,为了节省灯油,晚饭过后爸爸就要他上床睡觉,并把油灯熄掉,为了继续进行他喜爱的读书学习,聪明的高斯用一个大萝卜挖去芯,做了一盏小油灯,一个人躲到阁楼上,在微弱的灯光下看书学习,直到深夜。

  懂得十几种外语

  1791年的一天,14岁的高斯在放学回家的路上,边走边看书,不注意闯入了不伦瑞克公爵费迪南的庄园。在那个年代,德国还没有统一,全国由几十个小邦统治着。而公爵就是一邦之主,闯入公爵的庄园那还了得费迪南亲自盘问这个农村孩子,发现他是无意之中闯入的。而在盘问过程中,这孩子对答如流的才干,使他认定这个高斯是一个神童。于是,公爵决定造就高斯,于1792年资助他进入著名的卡罗琳学院学习语言和数学,以便为进入大学作准备。在那里,高斯学会了好几国语言,并精心研读了英国的牛顿、法国的拉格朗日、瑞士的欧勒这些大名鼎鼎的数学家的外文原著。

  1795年,在费迪南公爵的资助下,已打下良好基础的高斯进入举世闻名的哥廷根大学学习。这所德国的最高学府学风严谨,藏书丰富,人才荟萃,年轻有为的高斯在那里受到系统而严格的科学教育,很快就脱颖而出,作出了名扬世界的一系列重大贡献。

  把“数学王子”的桂冠戴在了他的头上。值得一提的是,当高斯进大学不久,1796年3月,19岁的高斯用圆规和直尺作出了正17边形,解决了两千多年来一直没有解决的一个世界难题。为了纪念他的这一重大成就,于1855年高斯去世后哥廷根大学按他的遗嘱建造了一座十分独特的纪念碑。它的底部是一个正17边形的台座,台座上面是高斯的雕像。

  高斯生平还喜欢文学与语言学,懂得十几种外语。1807年,才30岁的高斯就当上了当时德国最高学府哥廷根大学的数学和天文学正教授,还担任了该校天文台台长,取得如此辉煌的成就,别人称他是“天才”,可是高斯却回答道:“假如别人和我一样深刻和持久地思考数学,他们也会做出同样的发现。”

  1799 年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为代数学基本定理。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

  在 1801 年,高斯二十四岁时出版了《算学研究》,这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍同余 的概念。二次互逆定理也在其中。

  研究天文学

  二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

  当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801 年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为谷神星。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi 只能观察到它9 度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

  高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是最小平方法。

  1802 年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas 的天文学家Olbers 请他当哥廷根天文台主任,他没有立刻答应,到了1807 年才前往哥廷根就任。

  1809 年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817 年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812 年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

  1820 到1830 年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827 年他发表了《曲面的一般研究》,涵盖一部分现在大学念的微分几何。

  研究磁场

  在1830 到1840 年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

  1833 年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

  1835 年高斯在天文台里设立磁观测站,并且组织磁协会发表研究结果,引起世界广大地区对地磁作研究和测量。高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839 年才发表。

  1840 年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841 年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

  美国的着名数学家贝尔在他着的《数学工作者》一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800 年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

  在1855 年二月23 日清晨,高斯在他的睡梦中安详的去世了。

每一种轴的机械键盘,打字的手感都是不同的。每个人对机械键盘的喜好也不同,因此无法说明“什么轴的键盘好”。

建议:

了解一下不同轴机械键盘的特点,再根据自己的使用习惯去选择。

关于机械键盘,具体介绍如下:

青轴触发键程为24mm,压力为60g,点击寿命为2000万次,段落感明显;

茶轴触发键程为20mm,压力为60g,点击寿命为2000万次,段落感不明显;

红轴触发键程为20mm,压力为60g,点击寿命为2000万次,无段落感,直上直下;

黑轴触发键程为15mm,压力为80g,点击寿命为5000万次,无段落感,直上直下。

卡尔·弗里德里希·高斯(CFGauss,1777430-1855223),生于不伦瑞克,卒于哥廷根,德国数学家、物理学家和天文学家,大地测量学家。近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。名人故事

长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。名人故事

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

高斯(Johann Carl Friedrich Gauss)(1777年4月30日-1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并拥有数学王子的美誉。

  1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)及算术几何平均(arithmetic-geometric mean)。

  1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。

  1855年2月23日清晨,高斯于睡梦中去世。

(请参考“高斯”词条)

⑴ 数学家高斯的小故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

更多信息可以关注科学高分网数学家高斯的故事

⑵ 数学家高斯的一个小故事

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

⑶ 数学家高斯的故事

用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。

小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

(3)数学家高斯的故事扩展阅读:

重大成就:

19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。

他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。尽管线路才8千米长。

1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。

他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

⑷ 高斯数学家的小故事50字

1、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

2、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

3、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

4、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

5、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

(4)数学家高斯的故事扩展阅读:

高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。

当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。

高斯有六个小孩。高斯的所有小孩当中,据说Wilhelmina最接近他的天赋,但她年轻时就去世了。高斯与Minna Waldeck也有3个小孩:Eugene (1811–1896), Wilhelm (1813–1879) and Therese (1816–1864)。Therese照顾著整个家庭直到高斯去世,而她结婚。

高斯最后与他的儿子发生了冲突。他不希望他的任何一个儿子进入数学或科学的"怕玷污了家人的名字"的想法或担心里。高斯希望Eugene成为一名律师,但Eugene想学习语言类别的。而Eugene与高斯的另一个争执是-高斯拒绝支付由Eugene所举办的派对的费用。

Eugene很生气,所以在大约1832年时移居美国,而他在那里是相当成功的。Wilhelm也定居在密苏里州,从一开始的农民工作成为了在圣路易斯相当富有的制鞋企业。Eugene花了很多年得来的成功,抵消了他在高斯的朋友与同事间不好的声誉。也在9月3日看到了罗伯特高斯给菲莉克斯克莱因的信。

⑸ 关于数学家高斯的故事有哪些

生平事迹

童年时期

高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明 ,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495++100899(公差198,项数100)的一个等差数列。

青少年时期

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功地运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功地用尺规构造出了规则的17角形。

成年时期

高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff**(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼,黎曼创立了黎曼几何学。

19世纪40年代初期开始,高斯几乎完全退出了物理学的创新研究,只从事例行的天文观测,计算汉诺威测地工作中遗留下的问题,对老的研究课题、发表过的评论或报告作些修饰,解决一些小的数学问题.此后的出版物正反映了他的这种状态.他对E.E.库默尔(Kummer)新创立的理想论(1845)没有强烈的反应,对海王星的发现(1846)亦很漠然.C.G.雅可比(Jacobi)在参加纪念高斯获博士学位50周年大会后说,跟高斯谈数学问题时,他总是把话题叉开而谈些无聊的事.在40年代,高斯对格丁根大学的事务有了较多关注,担任过教授会的负责人;花了几年时间,将大学丧偶者基金会的财务预算奠基于可靠的统计规律之上;他对教学的兴趣也比以前浓厚了.(我们注意到,高斯在大学开的课,大部分是天文学方面的,唯有在当教授的第一年讲过一次数论,他最常讲的课是最小二乘法及其在科学中的应用.) 晚年的高斯在学术圈子以外的人眼里是位科学奇人,而高斯本人却极端热衷于从报纸、书本和日常生活中收集各种统计资料.在1848年革命时期,他几乎每天到学校守旧派成立的文学会(高斯是会员)附属的阅览室寻觅各种数据.如果某个学生正在看的报是他所寻找的,高斯会一直瞪着他直到对方递过来这份报纸.他因而被学生戏称为“阅览室之霸”.据说这一习惯对他从事投资活动(主要是买债券,包括德国以外发行的债券)大有裨益,他身后留下的财产几乎等于其年薪的200倍,说明他是个理财的好手.

高斯生命的最后几年仍保持学者风度,没有间断过阅读和参加力所能及的学术活动:

1850年,心脏病加重,行动受到限制.

1851年7月1日有日蚀,高斯作了他最后一次天文观测.

1851年,核准 G.F.B.黎曼(Riemann)的博士论文,给予高度评价.

1852年,改进傅科摆,解决一些小的数学问题.

1853年,为黎曼选定为获讲师资格需作的答辩题目(几何基础).

1854年1月,全面体检诊断高斯心脏已扩大,将不久于人世.但病情奇迹般地得到缓解.

1854年6月,听了黎曼关于几何基础的答辩报告,出席格丁根到汉诺威间铁路的开通仪式.

1854年8月,病情恶化,下肢水肿.

1855年2月3日清晨,高斯在睡眠中故去.

高斯的葬礼有 和大学的高级官员出席,他的女婿在悼词中赞扬高斯是难得的、无与伦比的天才.送葬抬棺者中有24岁的J.W.R.戴德金(Dedekind),他曾选修高斯的最小二乘法课.

高斯的大脑有深而多的脑回,作为解剖标本收藏于格丁根大学.

《高斯全集》(Carl Friedrich Gauss'Werke)的出版历时67年(1863—1929),由众多著名数学家参与,最后在 F.克莱因(Klein)指导下完成.全集共分12卷.前7卷基本按学科编辑:第1,2卷,数论;第3卷,分析;第4卷,概率论和几何;第5卷,数学物理;第6,7卷,天文.其他各卷的内容如下:第8卷,算术、分析、概率、天文方面的补遗;第9卷是第6卷的续篇,包括测地学;第10卷分两部分:Ⅰ,算术、代数、分析、几何方面的文章及日记,Ⅱ,其他作家对高斯的数学和力学工作的评论;第11卷也分两部分:Ⅰ,若干物理学、天文学文章,Ⅱ,其他作家对高斯测地学、物理学和天文学工作的评论;第12卷,杂录及《地磁图》.

离世

高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。

高斯的一生是不平凡的一生,几乎在数学的每个领域都有他的足迹,无怪后人常用他的事迹和格言鞭策自己。100多年来,不少有才华的青年在高斯的影响下成长为杰出的数学家,并为人类的文化做出了巨大的贡献。高斯的墓碑朴实无华,仅镌刻“高斯”二字。为纪念高斯,其故乡布伦瑞克改名为高斯堡。哥廷根大学立了一个正十七棱柱为底座的纪念像。在慕尼黑博物馆悬挂的高斯画像上有这样一首题诗:他的思想深入数学、空间、大自然的奥秘,他测量了星星的路径、地球的形状和自然力,他推动了数学的进展,直到下个世纪。

⑹ 数学家高斯的故事。

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一回道题目要同学们算算看,题答目是:

1+2+3+ +97+98+99+100 =

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

1+2+3+4+ +96+97+98+99+100

100+99+98+97+96+ +4+3+2+1

=101+101+101+ +101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才

⑺ 关于数学家高斯的故事320字

关键是修高速的故事,伤害别人是320次,这个我也不清楚,你找个专业人士了解一下吧。

⑻ 数学家高斯的故事(是他计算1+2+3+4。。。。。。+99+100的故事)!

高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。

⑼ 数学天才高斯的故事

CF Gauss是 德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。

高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。

⑽ 高斯的故事

1、高斯是位犹太人,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

2、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

3、在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。

4、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

5、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

6、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

7、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

8、1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。

9、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。

(10)数学家高斯的故事扩展阅读:

1、高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。

2、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。

3、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/3574057.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-03-06
下一篇2024-03-06

随机推荐

  • 妮维雅630淡斑精华真假

    关于妮维雅630淡斑精华的真假问题,我可以告诉你,这取决于你购买的渠道和产品包装。如果你选择在正规渠道购买,比如官网、专柜或者认可的线上零售商,那么你购买到的产品应该是真品。如果你选择在一些不明来源的小店或者个人手中购买,那么就存在假货风险

    2024-04-15
    50500
  • 精华露和精华液的区别

    精华露和精华液的区别在于质地不同、使用方法不同、适合人群不同。1、质地不同精华露是高浓缩后的护肤品,例如著名品牌SK神仙水就是这类型的产品,质地较为粘稠,更适合干性皮肤使用。但对于油性肌肤,因为油脂分泌旺盛的缘故,不太适合多种精华类的护肤品

    2024-04-15
    43400
  • 妮维雅的护肤品哪个系列好?

    洗面奶是妮维雅的控油保湿洗面奶,100毫升22元左右,洗脸后不紧绷,一整天都不出油,效果很好。还有1款也是妮维雅的,绿色的,含摩砂颗粒,也很好用。水是妮维雅的粉色瓶子的水,不含酒精,有收缩毛孔的作用,很赞~~200毫升40元左右,我的毛孔的

    2024-04-15
    38000
  • 什么美白淡斑产品好用又实惠呢?

    一、玉兰油(OLAY)抗糖小白瓶精华液(光感小白瓶)olay新升级第四代小白瓶革新抗糖美白科技, 抵御79%糖化, 抗糖抑黑减黄,层层提亮,缓解皮肤暗黄的状况,让皮肤看起来白里透光。这款olay小白瓶又被大家称之为“SK2小灯泡的平价替代

    2024-04-15
    36000
  • 妮维雅是欧莱雅旗下的吗 妮维雅是什么档次

    妮维雅是欧莱雅旗下的一款护肤品牌,它属于中档护肤品。妮维雅以其独特的产品设计和高质量的成分在市场上受到广大消费者的喜爱。让我们来讨论妮维雅是否属于欧莱雅旗下。是的,妮维雅是欧莱雅旗下的一个品牌。欧莱雅是全球知名的化妆品公司,拥有多个知名品牌

    2024-04-15
    36000
  • 妮维娅的洗面奶可以清洗掉防晒霜吗

    您好,知我药妆肌肤顾问很高兴帮助您。建议涂抹防晒后一定要每天卸妆。因为防晒剂本身是油溶性的,其中的持久配方、防水配方,洗面奶洗来如同“隔衣洗澡”,所以,先用卸妆油“以油溶油”,才能最有效、最温和地卸除干净。如果不彻底卸妆,很容易堵塞毛孔、引

    2024-04-15
    33000
  • 神仙水和神仙露的区别

    很抱歉,我并不了解“神仙露”这种产品,因此无法直接对“神仙水”和“神仙露”进行比较。不过,我可以为您介绍一下“神仙水”。“神仙水”是大家对SK-II护肤精华露的爱称,尽管其官方命名为“神仙露”。这是一种精华水,主要成分是pitera酵母精华

    2024-04-15
    30100

发表评论

登录后才能评论
保存