触摸屏已经成为了当今电子产品的主流应用,但是在寒冷的冬季,人们都想能够戴着手套就能够操作触摸屏。但就目前来说,这还是很困难的,因为大部分的触摸屏控制面板并不响应戴着手套的操作。这既是一个挑战,但同样也是一个商机,而且有很多厂商已经意识到这一商机。开始研发生产针对电容式触摸传感器的手套,该市场正在不断的扩大中。不难想象或许以后,这些手套将成为时尚的配件,掀起一股新的潮流。电容式触摸技术存在的局限,却可以通过这一解决方案来弥补,在冬季使用手持设备也不用再忍受寒冷之苦。除了手持式设备的冬季应用需要手套,一些用户则需要全年戴着手套操作,因此在新产品中整合电容式触摸传感器也显得有所必要。一般来说,可以通过大量的测试并对特定传感器设计进行精细调节。可以先观察触摸屏对干燥裸露手指的响应曲线,而手套的应用则可能会降低传感器的响应灵敏度。一般来说用薄塑料材料制作的家用手套介电常数非常高,因此对灵敏度影响较小。因此戴着薄塑料、一次性乙烯基手套进行操作时,电容式触摸传感器并不会受到太大影响。但是并不是所有的手套都对电容式触摸传感器影响不大,针织、机织材料或羊毛类材料制作的手套由于拥有许多大气空,因此介电常数非常低,使得手指与传感器电极绝缘,因此触摸屏的响应则会受到影响,变得不灵敏。此外手套十分潮湿、是否含有清洁剂等离子化合物等,也会对电容式触摸传感器带来极大的影响,应当考虑。考虑到这些因素后,设计一种可以提升戴手套之手指触摸响应的效率是方案也就变得有依据。
1、打开苹果手机桌面,点击进入设置选项。
2、在苹果手机设置界面,点击进入通用选项。
3、接下来在当前页面上,点击进入辅助功能选项。
4、进入之后,找到便捷访问,点击打开按钮。
5、最后在手机的页面点触两下即可进入触屏手套模式了。
装了导电纱,触碰电容屏的时候会吸收电荷,从而电容屏四周的电荷会去弥补被吸走那块区域的电荷,手机就是通过这个电荷往哪里聚集,就判断哪里被触及了。
手套采用了导电材料(例如含有金属的织物纤维),因此,手指指尖或手掌与屏幕之间仍然能够形成有效的电容,从而电荷与电流都能够传递,屏幕自然也就可以正常工作了。
现在的手机、平板上搭载的触摸屏幕都是电容屏,是基于人体的感应电流进行工作的。电容屏是一块四层的复合式玻璃屏,在屏幕的最内侧与中间夹层上,都涂了一层化学涂层ITO。
并在最外层涂有一层薄薄的矽土玻璃作为保护层。而那些ITO涂层,正是整个电容屏的重要工作面,它们从屏幕的四角分别引出四个电极,保障了屏蔽层的良好工作环境。
普通手套无法使屏幕工作的原因在于,普通手套是由厚厚的绝缘材料所制成的,从而导致手指在触摸屏幕时,手指与ITO涂层之间的距离隔得太远,不能形成电容而导致屏幕无法工作。
而触屏手套呢,它在手指的部位采用了导电材料(例如含有金属的织物纤维),因此,手指指尖与屏幕之间仍然能够形成有效的电容,从而电荷与电流都能够传递,屏幕自然也就可以正常工作了。
以前的电阻式触摸屏在用手工作时每次只能判断一个触控点,如果触控点在两个以上,就不能做出正确的判断了,所以电阻式触摸屏仅适用于点击、拖拽等一些简单动作的判断。
而电容式触摸屏的多点触控,则可以将用户的触摸分解为采集多点信号及判断信号意义两个工作,完成对复杂动作的判断。
电阻式触摸屏手指触摸的表面是一个硬涂层,用以保护下面的PET(聚脂薄膜)层,在表面保护硬涂层和玻璃底层之间有两层透明导电层ITO(氧化铟,弱导电体),分别对应X、Y轴,它们之间用细微透明的绝缘颗粒绝缘,触摸产生的压力会使两导电层接通,按压不同的点时。
该点到输出端的电阻值也不同,因此会输出与该点位置相对应的电压信号(模拟量),经A/D转换后即可获取X、Y的坐标值。这就是电阻技术触摸屏的最基本的原理。
而电容式单点触摸屏的单点电容式触摸屏只采用单层的ITO,当手指触摸屏表面时,就会有一定量的电荷转移到人体。为了恢复这些电荷损失,电荷从屏幕的四角补充进来,各方向补充的电荷量和触摸点的距离成比例,我们可以由此推算出触摸点的位置。
电阻式触摸屏一次只能判断一个触控点,若同时有两个以上的点被触碰,就不能做出正确反应,或者说反应混乱了。
演变到多点电容式触摸屏的多重触控的任务可以分解为两个方面的工作,一是同时采集多点信号,二是对每路信号的意义进行判断,也就是所谓的手势识别。与只能接受单点输入的触摸技术相比,多重触控技术允许用户在多个地方同时触摸显示屏。
以便能够对网页或进行伸缩和旋转等操作。苹果iPhone仅允许两个手指操作,所以又可以称作“双重触控”,而微软即将发售的Surface电脑则可对52个触摸点同时做出响应。
扩展资料:
触摸屏手套人体科技:
多点触控的电容屏触摸屏的操作是根据人体设计的,比如人体是导体和人体是感温的,手指在操作的时候一部分在起导体的作用,一部分在起温度感应的作用。
而在寒冷的冬天,当人们戴上手套试用触摸屏手套的时候,触摸屏的一切功能就不能用了,因为手套把手跟屏幕绝缘起来,也感应不到人体的温度,所以操作基本不可能。
由于冬天太冷,要保护手部,而手部是人体器官中最为精细致密的器官之一。它由27块骨骼组成,占人体骨骼总数的1/4,而且肌肉、血管和神经的分布与组织都极其惊人的复杂,仅指尖上每平方厘米的毛细血管长度就可达数米,神经末梢达数千个。
这些精细的神经网络可以使我们在几微秒内觉察到冷、热、疼痛等,甚至可以感受到振幅只有头发丝那么微小的震动。从人的出生之日起,手就没有停止过活动,到生命终止时,手平均可以活动25亿次。
然而,我们却常常忽略了手的重要性,疏忽了对它的适当保护,以致在各类丧失劳动能力的工伤事故中,手部伤害事故占到了20%。由此可见,在冬天使用触摸屏手机的时候,正确选择和使用防护用具十分必要。
-触摸屏手套
触屏手套原理是触屏手套将先进的金属混合在手套上的纤维里,使到手套一方面起到保温作用,另一方面也能担当手指和触摸屏之间的导电体,让用户戴着手套的同时也能如常地操作自己的手机。
以前的电阻式触摸屏在用手工作时每次只能判断一个触控点,如果触控点在两个以上,就不能做出正确的判断了,所以电阻式触摸屏仅适用于点击、拖拽等一些简单动作的判断。
而电容式触摸屏的多点触控,则可以将用户的触摸分解为采集多点信号及判断信号意义两个工作,完成对复杂动作的判断。
触屏手套的介绍
电阻式触摸屏手指触摸的表面是一个硬涂层,用以保护下面的PET(聚脂薄膜)层,在表面保护硬涂层和玻璃底层之间有两层透明导电层ITO,分别对应X、Y轴,它们之间用细微透明的绝缘颗粒绝缘。
触摸产生的压力会使两导电层接通,按压不同的点时,该点到输出端的电阻值也不同,因此会输出与该点位置相对应的电压信号,经A/D转换后即可获取X、Y的坐标值。这就是电阻技术触摸屏的最基本的原理。
而电容式单点触摸屏的单点电容式触摸屏只采用单层的ITO,当手指触摸屏表面时,就会有一定量的电荷转移到人体。为了恢复这些电荷损失,电荷从屏幕的四角补充进来,各方向补充的电荷量和触摸点的距离成比例,我们可以由此推算出触摸点的位置。
电阻式触摸屏一次只能判断一个触控点,若同时有两个以上的点被触碰,就不能做出正确反应,或者说反应混乱了。
欢迎分享,转载请注明来源:品搜搜测评网