这个,平常你见的大多数轿车和面包车都是使用真空助力液压制动系统。有的是前盘后鼓,有的前后都是盘刹。液压制动系统由:充液阀、蓄能器、制动踏板、钳盘制动器(或其他形式的制动器),以及制动尾灯开关,压力开关等组成。压力油经由充液阀向蓄能器供油后,一路进入脚踏阀,脚踏阀实际上为一个脚踩的比例换向阀,然后进入轮胎旁的制动器。当制动力不够时可由蓄能器短时供油。真空助力刹车一种是气推液形式的刹车。由发动机上的真空助力泵产生压力气体,推动刹车油缸,刹车油壶的右进入刹车油缸,起到增力的目的,然后进入制动器中。
汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。
一、制动系统概述
1制动系可分为如下几类:
(1) 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
(2) 制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
(3) 按制动能量的传输方式 制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
2制动系统的一般工作原理
制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。
可用右图所示的一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。
当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。
图D-ZD-01制动系统工作原理示意图
1制动踏板 2推杆 3主缸活塞 4制动主缸 5油管 6制动轮缸 7轮缸活塞 8制动鼓 9摩擦片 10制动蹄 11制动底板 12支承销 13制动蹄回位弹簧
3轿车典型制动系统的组成
右图给出了一种轿车典型制动系统的组成示意图,可以看出,制动系统一般由制动操纵机构和制动器两个主要部分组成。
(1) 制动操纵机构 产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。
(2) 制动器 产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。
图D-ZD-02 轿车典型制动系统组成示意图
1前轮盘式制动器 2制动总泵 3真空助力器 4制动踏板机构 5后轮鼓式制动器 6制动组合阀 7制动警示灯
二、制动器——鼓式制动器
1 概述
一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器可分为鼓式和盘式两大类。
旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。
2.领从蹄式制动器
增势与减势作用 右图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)如图中箭头所示。沿箭头方向看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。
图D-ZD-03领从蹄式制动器示意图
l领蹄 2从蹄 3、4支点 5制动鼓 6制动轮缸
图D-ZD-04领从蹄式制动器受力示意图
如右图,制动时两活塞施加的促动力是相等的。制动时,领蹄1和从蹄2在促动力FS的作用下,分别绕各自的支承点3和4旋转到紧压在制动鼓5上。旋转着的制动鼓即对两制动蹄分别作用着法向反力N1和N2,以及相应的切向反力T1和T2,两蹄上的这些力分别为各自的支点3和4的支点反力Sl和S2所平衡。可见,领蹄上的切向合力Tl所造成的绕支点3的力矩与促动力FS所造成的绕同一支点的力矩是同向的。所以力T1的作用结果是使领蹄1在制动鼓上压得更紧从而力T1也更大。这表明领蹄具有“增势”作用。相反,从蹄具有“减势”作用。故二制动蹄对制动鼓所施加的制动力矩不相等。倒车制动时,虽然蹄2变成领蹄,蹄1变成从蹄,但整个制动器的制动效能还是同前进制动时一样。
在领从式制动器中,两制动蹄对制动鼓作用力N1’和N2’的大小是不相等的,因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。
3.单向双领蹄式制动器
在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如右图所示。
双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。
图D-ZD-05双领蹄式制动器受力示意图
1 制动轮缸 2制动蹄 3支承销 4制动鼓
4.双向双领蹄式制动器
无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其结构示意图器。与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。
图D-ZD-06双向双领蹄式制动器示意图
1制动轮缸 2制动蹄 3制动鼓
右图是一种双向双领蹄式制动器的具体结构。在前进制动时,所有的轮缸活塞8都在液压作用下向外移动,将两制动蹄6和11压靠到制动鼓1上。在制动鼓的摩擦力矩作用下,两蹄都绕车轮中心O朝箭头所示的车轮旋转方向转动,将两轮缸活塞外端的支座7推回,直到顶靠到轮缸端面为止。此时两轮缸的支座7成为制动蹄的支点,制动器的工作情况便同图5-41所示的制动器一样。
倒车制动时,摩擦力矩的方向相反,使两制动蹄绕车轮中心O逆箭头方向转过一个角度,将可调支座10连同调整螺母9一起推回原位,于是两个支座10便成为蹄的新支承点。这样,每个制动蹄的支点和促动力作用点的位置都与前进制动时相反,其制动效能同前进制动时完全一样。
图D-ZD-07 双向双领蹄式制动器
5.双从蹄式制动器
前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图5-44。这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。
双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。因此,这三种制动器都属于平衡式制动器。
图D-ZD-08 双从蹄式制动器示意图
1支承销 2制动蹄 3制动轮缸 4制动鼓
6.单向自增力式制动器
单向自增力式制动器的结构原理见右图。第一制动蹄1和第二制动蹄2的下端分别浮支在浮动的顶杆6的两端。
汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,并且在各力作用下处于平衡状态。顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。对制动蹄1进行受力分析可知,FS2>FS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。
图D-ZD-09单向自增力式制动器
1第一制动蹄 2 支承销 3 制动鼓 4 第二制动蹄 5 可调顶杆体 6制动轮缸
右图为一种单向自增力式制动器的具体结构。第一蹄1和第二蹄6的上端被各自的回位弹簧2拉拢,并以铆于腹板上端两侧的夹板3的内凹弧面支靠着支承销4。两蹄的下端分别浮支在可调顶杆两端的直槽底面上,并用弹簧8拉紧。受法向力较大的第二蹄摩擦片的面积做得比第一蹄的大,使两蹄的单位压力相近。
在制动鼓尺寸和摩擦系数相同的条件下,单向自增力式制动器的前进制动效能不仅高于领从蹄式制动器,而且高于双领蹄式制动器。倒车时整个制动器的制动效能比双从蹄式制动器的效能还低。
图D-ZD-10单向自增力式制动器
1第一制动蹄 2制动蹄回位弹簧 3夹板 4支承销 5制动鼓 6第二制动蹄 7可调顶杆体 8拉紧弹簧 9调整螺钉 10顶杆套 11制动轮
7.双向自增力式制动器
双向自增力式制动器的结构原理如图5-47所示。其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。由图可见,在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。
图D-ZD-11双向自增力式制动器示意图
1 前制动蹄 2顶杆 3后制动蹄 4轮缸 5支撑销
图D-ZD-12双向自增力式制动器实物
右图所示的制动器即属于双向自增力式制动器。不制动时,两制动蹄和的上端在回位弹簧的作用下浮支在支承销上,两制动蹄的下端在拉簧的作用下浮支在浮动的顶杆两端的凹槽中。汽车前进制动时,制动轮缸(图中未画出)的两活塞向两端顶出,使前后制动蹄离开支承销并压紧到制动鼓上,于是旋转着的制动鼓与两制动蹄之间产生摩擦作用。由于顶杆是浮动的,前后制动蹄及顶杆沿制动鼓的旋转方向转过一个角度,直到后制动蹄的上端再次压到支承销上。此时制动轮缸促动力进一步增大。由于从蹄受顶杆的促动力大于轮缸的促动力,从蹄上端不会离开支承销。汽车倒车制动时,制动器的工作情况与上述相反。
8.凸轮式制动器
目前,所有国产汽车及部分外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,而且大多设计成领从蹄式。
图D-ZD-22 凸轮式制动器
右图为一凸轮式前轮制动器。制动时,制动调整臂在制动气室6的推杆作用下,带动凸轮轴转动,使得两制动蹄压靠到制动鼓上而制动。由于凸轮轮廓的中心对称性及两蹄结构和安装的轴对称性,凸轮转动所引起的两蹄上相应点的位移必然相等。
这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力图离开制动凸轮,从蹄端部更加靠紧凸轮。因此,尽管领蹄有助势作用,从蹄有减势作用,但对等位移式制动器而言,正是这一差别使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。
9.楔式制动器
楔式制动器中两蹄的布置可以是领从蹄式。作为制动蹄促动件的制动楔本身的促动装置可以是机械式、液压式或气压式。
两制动蹄端部的圆弧面分别浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。制动时,轮缸活塞15在液压作用下推使制动楔13向内移动。后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移一定距离,从而使制动蹄压靠到制动鼓上。轮缸液压一旦撤除,这一系列零件即在制动蹄回位弹簧的作用下各自回位。导向销1和10用以防止两柱塞转动。
10.鼓式制动器小结
以上介绍的各种鼓式制动器各有利弊。就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油,是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。
在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。
三、制动器——盘式制动器
1. 概述
图D-ZD-13盘式制动器
盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。
盘式制动器结构图
2.定钳盘式制动器
定钳盘式制动器的结构示意图见右图。跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。
这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。
图D-ZD-14定钳盘式制动器示意图
1制动盘 2活塞 3摩擦块 4进油口 5制动钳体 6车桥部
3.浮钳盘式制动器
右图所示为浮钳盘式制动器示意图,制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。
与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,只须在行车制动钳油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。故自70年代以来,浮钳盘式制动器逐渐取代了定钳盘式制动器。
图D-ZD-15浮钳盘式制动器示意图
1制动盘 2制动钳体 3摩擦块 4活塞 5进油口 6导向销 7车桥
4.盘式制动器的特点
盘式制动器与鼓式制动器相比,有以下优点:一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定;浸水后效能降低较少,而且只须经一两次制动即可恢复正常;在输出制动力矩相同的情况下,尺寸和质量一般较小;制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大;较容易实现间隙自动调整,其他保养修理作业也较简便。对于钳盘式制动器而言,因为制动盘外露,还有散热良好的优点。盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服装置。
目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。
四、驻车制动机构
按在汽车上安装位置的不同,驻车制动装置分中央驻车制动装置和车轮驻车制动装置两类。前者的制动器安装在传动轴上,称为中央制动器;后者和行车制动装置共用一套制动器,结构简单紧凑,已在轿车上得到普遍应用。
右图为一盘鼓组合式制动器。这种制动器将一个作行车制动器的盘式制动器和一个作驻车制动器的鼓式制动器组合在一起。双作用制动盘2的外缘盘作盘式制动器的制动盘,中间的鼓部作鼓式制动器的制动鼓。
进行驻车制动时,将驾驶室中的手动驻车制动操纵杆拉到制动位置,经一些列杠杆和拉绳传动,将驻车制动杠杆的下端向前拉,使之绕平头销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。待前制动蹄压靠到制动鼓上之后,推杆停止移动,此时制动杠杆绕中间支点继续转动。于是制动杠杆的上端向右移动,使后制动蹄压靠到制动鼓上,施以驻车制动。
解除制动时,将驻车制动操纵杆推回到不制动的位置,制动杠杆在卷绕在拉绳回位弹簧的作用下回位,同时制动蹄回位弹簧将两制动蹄拉拢。
图D-ZD-16制动器驻车制动机构
3顶杆组件 4制动蹄 5轴销 6驻车制动推杆 7推杆弹簧 8拉绳及弹簧 9制动衬片 10驻车制动杠杆
五、制动器的间隙自调装置
制动蹄在不工作的原始位置时,其摩擦片与制动鼓间应有合适的间隙,其设定值由汽车制造厂规定,一般在025~05mm之间。任何制动器摩擦副中的这一间隙(以下简称制动器间隙)如果过小,就不易保证彻底解除制动,造成摩擦副拖磨;过大又将使制动踏板行程太长,以致驾驶员操作不便,也会推迟制动器开始起作用的时刻。但在制动器工作过程中,摩擦片的不断磨损将导致制动器间隙逐渐增大。情况严重时,即使将制动踏板踩到下极限位置,也产生不了足够的制动力矩。目前,大多数轿车都装有制动器间隙自调装置,也有一些载货汽车仍采用手工调节。
制动器间隙调整是汽车保养和修理中的重要项目,按工作过程不同,可分为一次调准式和阶跃式两种。
右图是一种设在制动轮缸内的摩擦限位式间隙自调装置。用以限定不制动时制动蹄的内极限位置的限位摩擦环2,装在轮缸活塞3内端的环槽中,活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度。活塞相对于摩擦环的最大轴向位移量即为二者之间的间隙。间隙应等于在制动器间隙为设定的标准值时施行完全制动所需的轮缸活塞行程。
制动时,轮缸活塞外移,若制动器间隙由于各种原因增大到超过设定值,则活塞外移到0时,仍不能实现完全制动,但只要轮缸将活塞连同摩擦环继续推出,直到实现完全制动。这样,在解除制动时,制动蹄只能回复到活塞与处于新位置的限位摩擦环接触为止,即制动器间隙为设定值。
图D-ZD-17带摩擦限位环的轮缸
1制动蹄 2摩擦环 3活塞
六、制动传动装置
目前,轿车上的制动传动装置有机械式和液压式两种。
1.机械制动传动装置
一般,驻车制动系统的机械传动装置组成如右图所示。驻车制动系统与行车制动系统共用后轮制动器7。施行驻车制动时,驾驶员将驻车制动操纵杆1向上扳起,通过平衡杠杆2将驻车制动操纵缆绳3拉紧,促动两后轮制动器。由于棘爪的单向作用,棘爪与棘爪齿板啮合后,操纵杆不能反转,驻车制动杆系能可靠地被锁定在制动位置。欲解除制动,须先将操纵杆扳起少许,再压下操纵杆端头的压杆按钮8,通过棘爪压杆使棘爪离开棘爪齿板。然后将操纵杆向下推到解除制动位置。使棘爪得以将整个驻车机械制动杆系锁止在解除制动位置。驻车制动系统必须可靠地保证汽车在原地停驻,这一点只有用机械锁止方法才能实现,因此驻车制动系统多用机械式传动装置。
图D-ZD-18驻车传动机构组成示意图
1操纵杆 2平衡杠杆 3拉绳 4拉绳调整接头 5拉绳支架 6拉绳固定夹 7制动器
2.液压传动装置
目前,轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成,见右图。主缸与轮缸间的连接油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。制动前,液压系统中充满专门配制的制动液。
踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长直到完全制动。此过程中,由于在液压作用下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开踏板,制动蹄和轮缸活塞在回位弹簧作用下回位,将制动液压回主缸。
图D-ZD-19液压传动装置组成示意图
1前轮制动器 2制动钳 3制动管路
4制动踏板机构 5制动主缸 6制动轮缸 7后轮制动器
七、制动助力器
目前,轿车上广泛装用真空助力器作为制动助力器,利用发动机喉管处的真空度来帮助驾驶员操纵制动踏板。根据真空助力膜片的多少,真空助力器分为单膜片式和串联膜片式两种。
单膜片式 国产轿车都采用此种型式的真空助力器,如右图。
工作过程:
1 真空助力器不工作时(图a),弹簧15将推杆连同柱塞18推到后极限位置(即真空阀开启),橡胶阀门9则被弹簧压紧在空气阀座上10(即空气阀关闭)。伺服气室前、后腔经通道A、控制阀腔和通道B互相连通,并与空气隔绝。在发动机开始工作、且真空单向阀被吸开后,伺服气室左右两腔内都产生一定的真空度。
图D-ZD-20(a) 真空助力器工作原理图(未工作时)
图D-ZD-20(b) 真空助力器工作原理图(中间工作阶段)
图D-ZD-20(c) 真空助力器工作原理图(充分工作时)
图D-ZD-20真空助力器工作原理
2 当制动踏板踩下时,起初气室膜片座8固定不动,来自踏板机构的操纵力推动控制阀推杆12和控制阀柱塞18相对于膜片座8前移。当柱塞与橡胶反作用盘7之间的间隙消除后,操纵力便经反作用盘7传给制动主缸推杆2(如下图)。同时,橡胶阀门9随同控制阀柱塞前移,直到与膜片座8上的真空阀座接触为止。此时,伺服气室前后腔隔绝。
3 控制阀推杆12继续推动控制阀柱塞前移,到其上的空气阀座10离开橡胶阀门9一定距离。外界空气充入伺服气室后腔(如下图),使其真空度降低。在此过程中,膜片20与阀座也不断前移,直到阀门重新与空气阀座接触为止。因此在任何一个平衡状态下,伺服气室后腔中的稳定真空度与踏板行程成递增函数关系。
八、气压制动系统
以发动机的动力驱动空气压缩机作为制动器制动的唯一能源,而驾驶员的体力仅作为控制能源的制动系统称之为气压制动系统。一般装载质量在8000kg以上的载货汽车和大客车都使用这种制动装置。
右图为一汽车气压制动系统示意图。由发动机驱动的空气压缩机(以下简称空压机)1将压缩空气经单向阀4首先输入湿储气罐6,压缩空气在湿储气罐内冷却并进行
挖掘机主要由发动机、传动系统、行驶系统、制动系统、工作装置、液压系统、电气系统等组成,如图2-11所示。
图2-11 挖掘机的结构
(1)发动机
发动机一般为四冲程、水冷(或风冷)、多缸、直喷式柴油机发动机。少数挖掘机采用电控柴油机。
(2)传动系统
传动泵有机械传动式、半液压传动式和全液压传动式3种,其中机械传动式和半液压传动式应用较广。
(3)行驶系统
液压挖掘机行驶系统是整个机器的支撑部分,承受机器的全部质量和工作装置的反力,同时能使挖掘机作短距离行驶。按结构不同,行驶系统可分为履带式和轮胎式两类。
①履带式行驶系统。由履带、支重轮、托链轮、驱动轮、导向轮、张紧装置、行走架、油马达、减速机等组成。
液压挖掘机的行驶系统采用液压驱动。驱动装置主要包括液压马达、减速机和驱动轮,每条履带有各自的液压马达和减速机。由于两个液压马达可独立操作,因此机器的左右履带可以同步前进或后退,也可以通过一条履带制动来实现转弯,还可以通过两条履带朝相反方向驱动来实现原地转向,其操作十分简单、方便、灵活。
②轮胎式行驶系统。通常由车架、转向前桥、后桥、行车机构及支腿等组成。
后桥通过螺栓与机架刚性固定连接。前桥通过悬挂平衡装置与机架铰接连接。悬挂平衡装置的作用是当挖掘机行驶时,利用支承板的摆动和两悬挂油缸的浮动,保证4个车轮充分着地,减轻机体不平均承载、摆跳、道路冲击及机架扭曲,提高挖掘机的越野性能;当挖掘机作业时,将两悬挂油缸闭锁,保证挖掘作业时整机的稳定性。
(4)转向系统
轮胎式挖掘机,其转向系统通常采用全液压、偏转前轮式转向系统,主要由油箱(与工作装置液压系统共用)、转向油泵、转向器、滤油器、流量控制阀、转向油缸、油管和转向盘等组成。
履带式挖掘机,其转向系统比较简单,通过切断驱动链轮动力来实现。其转向装置为湿式、多片弹簧压紧、液压分离、手动液压操作方式转向离合器。
(5)制动系统
脚制动装置的制动器为凸轮张开蹄式制动器。制动传动器机构采用气压式,主要由空气压缩机、气体控制阀、脚制动阀、储气筒、双向逆止阀、快速放气阀、手操纵气开关、制动汽缸及气压表等组成。
手制动装置的制动器为凸轮张开蹄式制动器,传动机构为机械式。制动底板通过螺钉固定在上传动箱盖上;制动鼓用螺栓固定在接盘上,接盘则通过花键和上传动箱的从动轴连接。
当挖掘机作业时,必须解除手制动,否则,将损坏手制动器或回转液压马达。
(6)工作装置
工作装置是液压挖掘机的主要组成部分之一。由于工作性质的不同,工作装置的种类很多,常用的有反铲、正铲、装载和起重等装置,而且一种装置也可以有很多形式。
(7)液压系统
液压挖掘机的主要运动有整机行走、转台回转、动臂升降、斗杆收放、铲斗转动等,根据以上工作要求,把各液压元件用管路有机地连接起来的组合体叫作液压挖掘机的液压系统。液压系统的功能是把发动机的机械能以油液为介质,利用油泵转变为液压能,传送给油缸、油马达等,然后转变为机械能,再传给各种执行机械,实现各种运动。液压挖掘机的液压系统常用的有定量系统、分功率变量系统和总功率变量系统。我国规定,单斗液压挖掘机重8t以下的,采用定量系统;机重32t以上的,采用变量系统;机重8~32t的,定量和变量系统均可用。
全功率变量系统是目前液压挖掘机普遍采用的液压系统,通常选用恒功率变量双泵。液压泵的型号不同,采用的恒功率调节机构也不相同。
液压系统主要由油路系统、先导控制油路系统和控制系统构成。
(8)电气系统
液压挖掘机的电气系统包括启动线路、发电线路、照明、仪表以及由传感器和压力开关、电磁阀组成的控制电路,另外还有附属电路(如空调、收音机等)。启动电机按所配套的主机不同,分12V、24V两种,启动功率分3kW、37kW、48kW等。
发电线路主要包括交流发电机、电压调节器、充电指示灯及启动开关等。
为了保证安全、高效、节能及正常地工作,根据需要,挖掘机的电气系统都安装了各种信号装置,如机油温度报警、充电指示灯、机油压力报警、转向信号灯等,以警告操作者。为了使操作者随时掌握机器的运转情况,驾驶室中安装了各种仪表,如机油压力表、机油温度表、液压油温度表、水温表。现代进口挖掘机都采用了先进的电控装置,这种设备便于维修人员在挖掘机出现故障时能及时、准确地判断故障位置,及时修复。
行检查,检查制动鼓和制动片的技术状况。可求出制动鼓内圆筒面的圆度误差!圆柱度误差和径向全摆符合标准的“制动鼓、制动片和制动片不得有裂纹”摩擦片铆钉头下沉量不小于05mm,摩擦片表面不得有油污)检查并润滑制动片的支承销。支承销必须无发卡和锈蚀。制动片必须在支承销上旋转。)3)凸轮式车轮制动器要紧固制动底板和制动凸轮轴托架,凸轮轴不能自由旋转松动。)4)按规定给轮毂加注润滑脂。)5)安装车轮制动器后,按规定调整制动片和制动鼓之间的间隙。气压制动器在制动状态下,制动气室的推杆和调整臂应保持垂直。制动系统检查1主缸油箱注意:请勿加入过多的制动液。如果过量补充制动液,制动系统操作时制动液会溢出到发动机的排气部件,容易起火受伤。主油箱和主油缸之间通过导管连接。储存罐在车辆左侧,在发动机罩下方。由于贮液箱中含有足够的制动液,因此在通常的条件下不需要贮液箱的维护。主缸内低制动液传感器的制动液面低于基准时发出警告。拆卸箱盖之前,请打扫干净,以免灰尘进入油箱。拆下旋转盖和膜片。油箱的补给量不得超过最大补给液面。安装旋转盖和膜片。2更换主缸贮存器1)拆卸拆下液面传感器接线盒。拆下制动油箱的盖子。排出指南中的液体。用虹吸管清空制动液罐内的制动液越好。分离制动主缸和输液管。重要事项:注意溢出的制动液。用导水器提起隔板盖,打开制动液罐。撬下制动主缸输液管的盖子。检查油箱有无裂纹和变形。如有必要,更换油箱。用不含油的压缩空气清扫储存罐。用不含油的压缩空气干燥油箱。2)安装用制动泵贴剂贴上新密封圈,插入制动主缸,安装输液管。用新的六角螺母组装制动储液箱。从制动油箱到隔板的紧固扭矩为3牛顿米。安装导水器和隔板套。连接液面传感器电连接器。3)检查检查系统是否排气、有无泄漏。3主油缸的更换1)拆卸拆下主油缸油箱。将制动配管从主油缸上断开。拆下主油缸固定螺母。拆下主油缸。2)安装安装主油缸。安装主缸螺母。将制动助力器安装螺母拧紧到22牛顿米。将制动管连接到主缸上。将制动管螺母拧紧到16牛顿米。安装主油缸油箱。向主缸油箱内注入制动液。排出制动系统内的空气。4更换制动踏板1)拆卸拆下制动踏板弹簧、离合器踏板、离合器线。从叉子上拆下固定夹,拆下推杆销。从踏板轴上拆下固定弹簧。旋松踏板轴的六角螺母。拆下踏板轴,向左移动。拆下踏板和弹簧。2)安装用专用润滑脂润滑踏板轴。更换后,制动踏板为带踏板衬套的总成。更换踏板橡胶。在安装位置安装踏板和弹簧,将踏板轴插入踏板支架。安装垫圈和六角螺母。将踏板轴紧固到踏板支架上,拧紧扭矩18牛顿米。固定踏板轴,使推杆和制动踏板相连。安装推杆销和固定夹。插入制动踏板弹簧。安装离合器踏板弹簧和离合器拉线。根据需要进行调整。间隔紧固离合器支架,拧紧扭矩20牛顿米。5比例阀的更换1)拆卸重要事项请勿用任何清洗液清洗
保养维护更换刹车蹄和刹车盘。刹车片和刹车盘都有使用寿命,磨损到一定程度必须更换。由于受驾驶习惯、路况、车辆设计等诸多因素的影响,刹车片和刹车盘的具体使用周期很难界定。因此,建议每行驶5000公里,在例行保养时,最好定期检查制动系统的使用情况和各部件的磨损情况,以确定是否需要更换。
要维护定期调整刹车。刹车使用一段时间后,由于汽车的用力,会出现刹车跑偏的问题。有时向左,有时向右。如果出现这种刹车不协调的情况,一定要及时到维修店及时调整。发生这种情况时,如果你还在高速行驶,危险是非常大的。刹车的调整不一定要在维修时进行,可以随时随时调整。
新车要维护好刹车系统的磨合。新车在使用初期有一个磨合期,其中不可缺少的部分就是刹车系统的磨合。新车的前1000公里磨合很重要,制动系统也需要磨合。最好不要紧急制动。为了能平稳地磨合,踩刹车前应先踩下离合器,但这只是临时措施。1000公里后,为了延长离合器的寿命,还是要“先刹车后离”。更好的保证汽车的安全驾驶。保护汽车的刹车系统。
另外要注意制动系统对汽车的安全非常重要。但刹车系统的保养却常常被司机忽略。制动系统往往只有在发现制动系统工作不正常时才进行维修。这极有可能因刹车突然失灵而造成重大灾难。因此,只有对制动系统进行定期维护和保养,才能保证制动系统的正常工作,从而保证行车安全。汽车和小型货车的制动系统主要使用制动液来传递制动力,而大型客车和重型货车则使用气动制动系统。
(1)后轮制动系统的结构特点
后轮制动系统均采用脚踏板控制。后轮制动系统分为鼓式制动和盘式制动两种,如图7-51所示。
图7-51 后制动器
后轮鼓式制动系统一般采用机械杠杆式操纵,主要由制动踏板、制动拉杆、后制动器等组成。
后轮盘式制动系统一般采用液压式操纵,主要由后制动踏板、后制动储油缸、后制动主缸、后制动钳、后制动盘等组成。
(2)对后轮制动系统的要求
①对后轮鼓式制动系统的要求。对鼓式制动器的要求主要有:制动蹄衬片与后制动鼓内圆面要有良好的接触,当制动蹄块张开时,其外圆尺寸与后轮毂孔内圆尺寸要一致,必须都是整圆;制动蹄衬片与制动凸轮应耐磨,不能有油污染。
② 对后轮盘式制动系统的要求。对盘式制动器的要求主要有:制动主泵和制动钳的活塞与缸壁要有合适的间隙;活塞环与缸壁要有良好的密封;制动衬片要耐磨,并不能有制动液污染;制动盘应平整,不偏摆。
(3)后鼓式制动器的拆卸
先拆下排气消声器,然后拆卸后轮轴螺母,卸下后轮。在变速传动箱体右侧,用手指扳开制动蹄,取下制动蹄块及蹄块弹簧。在变速传动箱体左侧,拆下后制动拉杆尾端的调整螺母,将制动拉杆从制动臂上取出。拆下制动臂上夹紧螺栓,即可从凸轮轴外端上取下制动臂、磨损指示牌等。后轮鼓式制动器零件拆卸如图7-52所示。制动鼓内积存的石棉粉末对人是有害的,须用专门的洗涤剂进行清洗。
图7-52 后轮鼓式制动器零件拆卸
(4)后鼓式制动器的检修
①制动鼓。检查制动鼓内摩擦表面的磨损情况,用游标卡尺检测其内径。若测得内径值已超过使用极限值,或已出现台阶性磨损,须更换新的制动鼓。
拆下轮辐与轮辋的安装螺栓,更换新的轮辐总成,装上新的安装螺栓、碟形垫圈、螺母,注意新的碟形垫圈小端朝螺母方向装,不可装反。分2~3次将螺栓拧紧到规定扭矩。
注意制动鼓内摩擦表面上不能沾上任何油污,以免丧失制动能力。若已沾上油污,必须进行除油处理。
② 制动蹄摩擦片。检查制动蹄摩擦片上是否有油污,若已沾上油污,在摩擦片磨损不严重,不必更换时,也必须先进行除油处理,然后再用粗砂纸擦去油污表面层,使其现出干净的摩擦片为止。注意在整个摩擦面上要均匀地擦拭,使其保持原有的接触面形状。
用游标卡尺检查制动蹄摩擦片的厚度。特别是靠近凸轮端磨损最严重的部位,如测得厚度尺寸已小于使用极限值,应更换或修理。
为了保持制动蹄摩擦片与制动鼓之间接触均匀一致,更换制动蹄时必须成套更换。
在无配件的情况下,也可采用更换摩擦片的方法进行修复。先用錾子清除摩擦片,用粗砂布将制动蹄粘接表面磨平,弄粗糙。按原摩擦片尺寸锯下一块石棉摩擦片,也将粘接表面弄粗糙。用毛刷将制动蹄、摩擦片的粘接表面清理干净,再用酒精洗净。用204或2124强力粘接胶,将其拌匀,均匀地涂覆在制动蹄、摩擦片的粘接表面上,然后用专用工具将摩擦片与制动蹄一起夹紧,放入烘箱中烘干,并在120℃温度下保温2~4h。
摩擦片粘接好后,先用平锉将其两端倒角、去毛边,再将两制动蹄固定在与其安装尺寸相同的专用夹具上,在车床上对摩擦表面进行车削,使两制动蹄摩擦表面在同一圆周上,且其外表面圆直径比制动鼓内径小05~08mm,以保证制动蹄装入制动鼓内时具有一定的分离间隙。
(5)后鼓式制动器的安装
①凸轮轴及制动臂。将凸轮上涂上少量的润滑脂,把凸轮轴上有“·”标记侧朝向后轮轴从右侧穿入制动器底板;将磨损指示牌装入花键轴,注意指示牌孔中凸起处对准花键轴上凹槽;将制动臂的开口槽与凸轮轴端上的凹槽对准装入凸轮轴花键轴上;如图7-53所示。再穿入夹紧螺栓,拧上螺母,将螺母拧紧到规定扭矩(8N·m)。
图7-53 安装凸轮轴和制动臂
图7-54 安装制动蹄
② 制动蹄。将制动器底板销上涂上少量的润滑脂。将弹簧装于制动蹄上,用双手掰开两制动蹄,先将制动蹄嵌入销上,然后将制动蹄装到凸轮上,如图7-54所示。扳动制动臂,检查制动蹄是否张开、收拢灵活自如。擦去凸轮及销上多余的润滑脂,不可弄脏摩擦片。
③ 安装制动鼓。用干净布擦净制动鼓内表面,千万不可沾有油污。将后轮装于后轮轴花键轴上,装上垫圈和后轮轴螺母,将后轮轴螺母拧紧到规定的扭矩。再将排气消声器装上,拧紧安装螺栓到规定扭矩。
④制动拉杆。将制动拉杆穿入制动臂销中,装上调整螺母,按前述的方法和要求,检查调整后制动手柄的自由行程,并将其调整到规定值(15~23mm)。
欢迎分享,转载请注明来源:品搜搜测评网