从PLC输出了控制信号到了DC24V的直流继电器的线圈(例如:HH52P-FL ,HH53P-FL ,HH54P-FL等) ,然后由直流继电器的常开触点接到了电磁阀。那个元件的名称是直流继电器。
普通带锯床的改造
锯削下料长度通过调节标尺14与返回到位开关的相对位置来实现,下料数量由计数器实现,各动作的完成由到位开关检测。锯削速度由调压阀调整供油压力进行控制。各动作的逻辑关系由继电器完成,驱动由动力油缸完成,控制由电磁阀完成。
对于普通带锯床而言,由于压力的变化,液压油温度的变化以及电磁阀和继电器的滞后都影响锯削送料的精度,因此下料精度差,批量下料的一致性也不好。此外,在改变普通带锯床下料长度时,由于需调整送料长度标尺,操作也比较繁琐。
由于锯削的材料、锯条性能的差异,最好对锯条的速度和锯削速度能实时自动调整。比如,当锯条弯曲达到系统的一定阀域值时,系统就降低速度自适应或关闭进给。这需要在原有普通带锯床的基础作较大的改动,如:改变原有的液压单元,增加锯条弯曲监控器等。在原普通锯床上装配光栅尺进行位置测量,原液压系统不变。控制系统软件安全功能设计,包括料仓、储料管理检索、锯件分类管理、锯条弯曲监控、材料压紧、锯条速度、锯削进给速度的自适应控制等。为了能同时满足不改变原液压系统的要求,系统增加了基于普通电磁阀的位置控制模块。
系统控制改造
伺服系统的闭环位置控制是比较容易的。普通电磁阀只有“通”、“断”两种状态,并且具有电磁机械滞后。液压油的温度及压力变化影响到送料滑台的定位,因此采用传统的控制理论进行处理比较困难。为使到达目标位置前关闭送料油缸液压进给,使送料油缸停止时刚好在目标位置,是问题的关键。
系统伺服位置控制模块采用采样插补和预见控制相结合的位置控制(具体控制略)。而普通电磁阀油缸的位置控制模块采用学习、预见控制,通过系统经验值和当前状态,决定关闭送料油缸的位置,使送料油缸停止时刚好达到目标位置。由于电磁机械滞后及运动惯性,通过“通”“断”控制送料滑台移动01mm几乎不可能的。为了保证最小送料长度及送料精度,后钳使送料滑台后退到到LK位置,然后向前移动到预测位置LT关闭送料电磁阀。当送料油缸运动停止时后钳夹紧。后钳夹紧到位时前钳松开,前钳松开到位时开始送料。送料到位后前钳夹。前钳夹紧到位时后钳松开。后钳松到位后开始后退,为下一次送料作准备。虽然系统定位多移动了距离2X(LK-L),但整个过程与锯削过程并列进行。在送料长度小于最大一次送料长度时不影响效率。
机械维修
新购的一台GL7132卧式半自动弓锯床,空载试机一切正常。加载试锯,锯片切入棒料时工进慢了下来,似进非进,弓锯长时间停留在一个位置上。怀疑油不足,于是注油至满溢出来,重试结果依旧。后又怀疑油不净、管路不畅,将电磁阀等液压件全都拆下清洗一遍,装好重试,故障依然。
分析锯床液压原理图。液压系统可实现三个功能:锯弓快速退起、锯弓快速驱进、配合锯弓的直线往复运动,可以实现锯弓的进给运动(进刀和抬刀运动)。
通过分析,加上之前的两次错误处理,断定不能进刀的原因出现在进给油缸上。于是将进给油缸拆下检修。在油缸下腔装上半腔油,把活塞压入缸内,并慢慢加压,活塞杆中间的孔喷油,表明正常,将该孔用手加力堵住,继续压活塞向缸底运动,发现活塞杆处的两个单向阀之一少许冒油,一会儿多,一会儿少,压力越大,油冒得越多,表明工进时油缸上下腔串通,压差趋于或等于零,当然就不能正常进刀了。
拆下冒油的那个单向阀,发现多装了一个直径3mm的小钢球。去掉小钢球后,清洗油缸重新装好,开动弓锯锯切,一切正常。
锯床是较简单的机床,用户不会要求自己的锯床具有加工中心的功能。计算机控制的锯床不只为用户提高了锯削的效率和质量,更重要的是计算机的网络功能,会使锯削与CIMS的其余环节联系更紧密,管理更方便。
数控铣床电磁阀的作用如下:
根据指定的数据,控制流体的方向,是一种自动化的电器元件,对介质方向进行控制,从而达到对阀门开关的控制。
卡尔玛正面吊油缸开关电磁伐的作用是控制卡尔玛正面吊油缸的运动方向,比例电磁伐的作用是对系统的液压压力和流量进行精准比例控制。
1、通过改变电磁阀内部的通道,实现液压油在卡尔玛正面吊油缸两个腔之间的流动,从而实现油缸的上下运动。
2、比例电磁阀则常用于需要对系统的液压压力和流量进行精准比例控制的场合,通过电信号来调节液压油的流量,从而控制液压执行元件的运动速度和力度大小。
欢迎分享,转载请注明来源:品搜搜测评网