1.解剖学的人体标准姿势是什么?
人体标准姿势:身体直立,两眼向正前方平视,上肢自然下垂于躯干两侧,手掌向前,两足并拢,足尖向前。
2.试述浆细胞的光、电镜结构和功能。
浆细胞呈圆形或椭圆形,细胞核圆形,染色质多聚集在核周并呈辐射状排列,形似车轮状。细胞质较多,嗜碱性,近细胞核处有一着色较浅而透明的区域。电镜下可见细胞质内含大量的粗面内质网,发达的高尔基复合体。浆细胞来源于B细胞,可产生抗体,参与机体的体液免疫。
3.试述网织红细胞的形态结构特点、正常值和意义。
网织红细胞是未完全成熟的红细胞,占成人外周血红细胞总数的0.5%~1.5%,新生儿可达3%—6%。该细胞较成熟红细胞略大。煌焦油蓝染色,可见细胞内有蓝色的细网或颗粒,电镜下为残留的核糖体。1-3天后该细胞即可发育成熟。临床上网织红细胞的计数可作为贫血等某些血液性疾病诊断、疗效判断和预后估计的指标之一。
4.简述化学性突触的电镜下结构。
化学性突触由三部分组成:①突触前成分:一般是前一个神经元的轴突终末膨大部分,有突触小泡、线粒体。与下一个神经元接触部位的细胞膜为突触前膜。②突触后成分:是后一神经元或效应细胞与突触前成分相对应的局部区域。该处的细胞膜增厚,为突触后膜,含有能与神经递质特异性结合的受体。③突触间隙:是突触前膜与突触后膜之间的狭窄间隙。
5.椎骨之间的连接结构有哪些?
椎骨的主要连接结构:椎间盘、椎间关节、黄韧带和前、后纵韧带位置。
6.简述肩关节、肘关节、膝关节及髋关节的构成。
肩关节由肱骨头和肩胛骨的关节盂构成;肘关节由肱尺关节、肱桡关节和桡尺近侧关节构成,这三个关节包在一个关节囊内。可完成屈、伸、旋前、旋后动作;膝关节由股骨内、外侧髁、胫骨内外侧髁和髌骨共同构成;髋关节由股骨头和髋臼构成。
7.腹股沟管是如何构成的?管内有何结构通行?
腹股沟管位于腹前壁下部腹股沟韧带内侧半上方肌和腱之间的裂隙。前壁:腹外斜肌腱膜和腹内斜肌。后壁:腹横筋膜和腹股沟镰。上壁:腹内斜肌和腹横肌的弓状下缘。下壁:腹股沟韧带。
通行结构:男性为精索,女性为子宫圆韧带。
8.膈上有哪些裂孔?分别通行什么结构?
膈有3个裂孔:位于第12胸椎前方,膈的左、右脚(膈的起点),与脊柱之间有主动脉裂孔,通过主动脉和胸导管。主动脉裂孔的左前上方有食管裂孔,通过食管和迷走神经。食管裂孔的右前上方的中心腱内,有腔静脉孔,孔内有下腔静脉通过。
《人体解剖学与组织胚胎学》作业2
一、问答题:
1.简述胃的位置、分布和胃的毗邻。
胃在中等程度充盈时,大部分位于左季肋区,小部分位于腹上区。胃前壁从右向左与肝左叶、腹前壁和膈相邻;胃后壁与胰、左肾和左肾上腺相邻;胃底与膈和脾相邻。
2.试述胃底腺主细胞、壁细胞的结构和功能。
1)主细胞又称胃酶细胞,数量最多,主要分布于胃底腺的体和底。细胞呈柱状,细胞质嗜碱性,顶部细胞质含大量酶原颗粒。电镜下细胞基底部及核周围有丰富的粗面内质网,核上方有发达的高尔基复合体,游离端胞质内有大量的酶原颗粒。主细胞可分泌胃蛋白酶原,经盐酸撒活成胃蛋白酶,可水解蛋白质。婴儿的主细胞还能分泌凝乳酶。
2)壁细胞又称盐酸细胞,数量较少,以胃底腺的体部和颈部较多。细胞呈三角形或圆形,细胞核圆形.居中,有的细胞可见双核,细胞质嗜酸性强。电镜下,壁细胞游离面的细胞膜向细胞内深陷形成迂曲分支的小管,称细胞内分泌小管,小管附近有许多小管泡系、线粒体和高尔基复合体。该细胞具有分泌盐酸和内因子的功能。
3.肝分泌的胆汁经何途径排入十二指肠?
肝脏分泌的胆汁,由肝管汇合出肝,贮存在胆囊中,胆囊内的胆汁通过胆管于乳头出开口流入十二指肠。
4.试述肝小叶的定义、组成、结构及功能。
肝小叶是肝结构和功能的基本单位,由中央静脉、肝板、肝血窦和胆小管组成。中央静脉位于肝小叶的中央,肝血窦通人其内。肝板由肝细胞组成。肝细胞体积大,细胞核圆形位于细胞中央,可见双核。电镜下,可见细胞质内含丰富的内质网和发达的高尔基复合体,较多的线粒体等。肝血窦位于肝板之间,其内皮细胞有孔,且间隙大,基膜不完整。窦腔内除血液外还有肝巨噬细胞。肝细胞与血窦内皮细胞之间有窦周间隙,内充满血浆,此处的肝细胞面有大量微绒毛。
5.鼻旁窦有哪几对,分别开口于何处
鼻旁窦有上颌窦、额窦、筛窦和蝶窦四对。其中上颌窦、额窦和筛窦的前、中群开口于中鼻道,筛窦后群开口于上鼻道,蝶窦开口于蝶筛隐窝。
6.试述肺泡及气血屏障的结构。
肺泡为多面形囊泡,其一面开口于肺泡囊、肺泡管或呼吸性细支气管,其余各面与相邻肺泡彼此相贴;相邻肺泡间有肺泡孔;肺泡表面覆盖以肺泡上皮,由两型细胞组成。I型肺泡上皮细胞呈扁平状,覆盖肺泡大部分表面,细胞质内含许多吞饮小泡。Ⅱ型肺泡上皮细胞呈圆形或立方形,镶嵌于I型肺泡上皮细胞之间,凸向肺泡腔,表面有少量微绒毛,胞质内有许多嗜饿性板层小体。
7.试述肾小体电镜下结构及滤过屏障。
形态结构:肾小体血管球为一团蟠曲的毛细血管,位于肾小囊内。入球微动脉从肾小体血管极处进入肾小囊,分支并相互吻合成网状毛细血管袢,再汇合成一条出球微动脉从血管极处离开肾小囊。电镜下,血管球毛细血管为有孔型毛细血管,孔上大都无隔膜。血管极处的少量结缔组织随血管进入血管球,形成毛细血管袢间的血管系膜,系膜内有星状多突的球内系膜细胞参与血管基膜的更新。
8.男性输尿管和尿道的狭窄和弯曲分别位于何处
尿道外口,尿道膜部,尿道内口,耻骨下弯(如将阴茎向上提起,耻骨前弯可变直)。
9.简述子宫的位置、分布及子宫内膜周期性变化的分期。
子宫位于盆腔中央,膀胱和直肠之间。正常成年未孕女子子宫呈前倾前屈位,子宫的固定装置主要是盆膈和阴道的承托和韧带的牵引固定。四对韧带是子宫阔韧带、子宫圆韧带、子宫主韧带、骶子宫韧带。
《人体解剖学与组织胚胎学》作业3
一、问答题:
1.简述心脏内防止血液逆流的结构。
主要有:房室瓣(二尖瓣和三尖瓣)、动脉瓣(肺动脉瓣和主动脉瓣)、腱索、乳头肌。
如:二尖瓣是附于左房室口周缘的二片瓣膜、借腱索连于乳头肌,有阻止左心室的血液流回左心房的作用。
2.简述左、右冠状动脉的起始、主要分支和分布。
左冠状动脉起自主动脉起始部,经左心耳与肺动脉于之间行向左前方,随即分为前室间支和旋支,前室间支分布于左、右心室前壁的—部分和室间隔前2/3部;旋支分布于左房和左心室。
右冠状动脉起自主动脉起始部,经右心耳与肺动脉干之间人冠状沟,右行至膈面,延续为后室间支,沿途分支分布于左、右心室的下壁、室间隔的后1/3部及右心房,还分支供应窦房结和房室结。
3.供应胃的动脉有哪些它们分别来源于何动脉
胃左动脉起自腹腔干,胃右动脉起自肝固有动脉,胃网膜左动脉起自脾动脉,胃网膜右动脉起自胃十二指肠动脉;胃短动脉起自脾动脉。
4.肝门静脉收集哪些器官的静脉血肝门静脉与上、下腔静脉的吻合部位有哪些
肝门静脉主要收集胃、肠、胰、脾和胆囊等器官的静脉血。
肝门静脉与上、下腔静脉在食管下部吻合形成食管静脉丛,在直肠吻合形成直肠静脉丛,在脐周围吻合形成脐周静脉网。
5.试述毛细血管的电镜下结构特点和分布。
电镜下,毛细血管分为连续毛细血管、有孔毛细血管、窦状毛细血管。连续毛细血管:内皮细胞的胞质内吞饮小泡丰富,细胞连续;细胞间有紧密连接;基膜完整;分布在结缔组织、肌组织、肺和中枢神经系统。有孔毛细血管:内皮细胞的胞质内吞饮小泡较少,有许多贯穿全厚的孔,孔上有或无隔膜封闭;细胞间有紧密连接;基膜完整;分布在胃肠粘膜、某些内分泌腺、肾血管球等处。窦状毛细血管:内皮细胞上有或无窗孔,细胞间隙较大;细胞间无紧密连接;基膜不完整或缺如;分布在肝、脾、骨髓和一些内分泌腺。
6.试述淋巴结浅层皮质的结构。
浅层皮质是临近淋巴结被膜处的淋巴组织,主要含B细胞。当受到抗原刺激后,可出现大量的、由B细胞密集而成的球状淋巴小结。功能活跃的淋巴小结中心浅染,称生发中心。生发中心内侧份聚集着大量的大淋巴细胞,染色深,为暗区。其外侧份为中等淋巴细胞,此区染色较浅,为明区。淋巴小结周边,而且近被膜侧为小淋巴细胞,它们常聚集成帽状结构,称小结帽。同时淋巴小结内含较多的巨噬细胞。
7.眼球外肌有哪些各有什么作用
运动眼球的各肌及其作用是:内直肌使眼球前极或瞳孔转向内侧。外直肌使眼球前极或瞳孔转向外侧。上直肌使眼球前极或瞳孔转向上内。下直肌使眼球前极或瞳孔转向下内。上斜肌使眼球前极或瞳孔转向下外。下斜肌使眼球前极或瞳孔转向上外。
8.简述中耳鼓室六个壁的组成和内含结构。
鼓室的上壁为鼓室盖,下壁为颈静脉壁,前壁为颈动脉壁,后壁为乳突壁,外侧壁主要由鼓膜构成,内侧壁为迷路壁,有面神经。鼓室内有三块听小骨:锤骨、砧骨、镫骨。
《人体解剖学与组织胚胎学》作业4
一、回答以下问题。
1.腓总神经损伤可引起哪些肌群瘫痪病人有何主要表现
腓总神经在腓骨颈处表浅易受损,损伤后的表现为:小腿前、外侧群肌瘫痪;此时在小腿后群肌的作用下形成“马蹄内翻足”,同时伴有小腿前、外侧面及足背的感觉障碍。
2.面神经损伤的病人有哪些症状和体征
患侧额纹消失、鼻唇沟变浅;口角歪向健侧;唾液减少;味觉障碍。
3.分布到舌的神经有哪些
下颌神经分布到舌前2/3的一般感觉;面神经分布到舌前2/3的味觉;舌咽神经分布到舌后1/3的感觉和味觉;舌下神经支配舌肌的运动。
4.脊髓内主要上、下行纤维束有哪些说明它们各自的起止和功能。
(1)上行纤维束:薄束和楔束位于后索内,由同侧脊神经节发出的中枢突组成。脊髓丘恼束(包括脊髓丘脑侧束和脊髓丘脑前束)位于外侧索和前索内,由对侧后角细胞发出的交叉后的纤维组成。
(2)下行纤维束:皮质脊髓侧束和皮质脊髓前束二束分别位于外侧索和前索。皮质脊髓侧束纵贯脊髓的全长,由对侧大脑皮质发出纤维交叉后形成,止于同侧的前角运动神经元,控制骨骼肌的随意运动。皮质脊髓前束仅见于颈髓和上部胸髓,由同侧大脑皮质发出的纤维形成,纤维逐节交叉后再止于对侧的前角运动神经元。
5.内囊膝和后肢损伤可伤及哪些上、下行纤维束病人有何主要表现
通过内囊的纤维主要有:内囊膝有皮质核束;内囊后肢有皮质脊髓束、丘脑皮质束(丘脑上辐射)、视辐射和听射。当一侧内囊损伤,患者可出现对侧半身浅、深感觉丧失;对侧半身痉挛性瘫痪;双眼视野对侧半同向性偏盲,即临床上称为的“三偏症”。
6.简述脑脊液的产生和回流途径。
脑脊液由侧脑室的脉络丛产生,经室间孔至第三脑室;与第三脑室脉络丛产生的脑脊液汇合,经中脑水管至第四脑室,与第四脑室脉络丛产生的脑脊液汇合,再经第四脑室正中孔和两个外侧孔至蛛网膜下隙,使脑和脊髓被脑脊液所浸泡,可对它们有营养、支持和保护的作用;脑脊液最后经蛛网膜粒渗入上矢状窦,归人静脉。
7.试述肾上腺皮质束状带的光、电镜结构及功能。
束状带位于球状带的深面,最厚。细胞较大,呈多边形,排列成单行或双行的细胞索,索间有窦状毛细血管和少量结缔组织,束状带的细胞核染色较浅,胞质富含脂滴,在HE标本上,脂滴常被溶解,故胞质呈泡沫状。束状带细胞分泌糖皮质激素,如可的松等,主要作用能使蛋白质及脂肪分解转变为糖、抑制免疫反应和抗炎症作用。束状带受垂体前叶分泌的促肾上腺皮质激素调节。
8.试述甲状腺滤泡上皮细胞的结构特点及其功能。
甲状腺滤泡上皮细胞分泌的甲状腺激素为含氮类激素,所以它具有含氮类激素细胞的超微结构特点。该细胞为立方形,胞质嗜碱性,核圆,位于中央。滤泡上皮细胞的高度随腺体的功能状态而变化。当功能活跃时,滤泡上皮细胞增高呈柱状,滤泡腔内胶质减少;反之,细胞呈扁平状,胶质增多。电镜下,滤泡细胞胞质内有发达的粗面内质网、高尔基复合体、过氧化物酶体、溶酶体和线粒体,细胞顶部有中等密度的分泌颗粒和低电子密度的胶质小泡。功能:滤泡上皮细胞合成和储存T3、T4,促进细胞氧化和能量代谢,促进机体的生长发育。
9.试述胎盘的结构及胎盘膜。
人胎盘一般结构:足月胎盘呈圆盘状,重500克,直径15~20厘米,中央厚,边缘薄,分两个面:胎儿面光滑,表面覆盖有羊膜,脐带一般附于中央;母体面粗糙,可见15~30个胎盘小叶。组织结构:胎儿面由丛密绒毛膜与表面的羊膜组成。丛密绒毛膜形成绒毛膜板,板上发出40~60个绒毛干。
胎盘膜:胎儿血与母体血在胎盘内进行物质交换所通过的结构,称胎盘膜或称胎盘屏障。早期胎盘膜较厚,从绒毛间隙至绒毛毛细血管内依次为合体滋养层、细胞滋养层及基膜、绒毛结缔组织、毛细血管内皮基膜及内皮;胚发育后期,胎盘膜变薄,母血与胎儿血之间仅隔合体滋养层、绒毛毛细血管内皮及其共同基膜,通透性增强,有利于物质交换。
突触结构参数在CON组与LS组之间有明显不同,提示PNS已经引起子代海马突触发生形态学改变,可能对其可塑性有影响。突触可塑性是指突触在一定条件下调整功能、改变形态、增加或减少数目的能力,既包括传递效能的变化(LTP/LTD),也包括形态结构的变化,如PSD增厚或变薄等。一般认为,突触的修饰在很大程度上反映了整个神经系统回路的可塑性,因此也反映了行为的可塑性。
LS组PSD厚度明显大于CON组(P<0001),活性区长度明显加长(P<005),Sv数值也较CON组显著增加(P<005)。PSD由细胞骨架蛋白和调节蛋白组成,其中有些蛋白与突触后膜的离子通道有联系,其形态大小变化的实质涉及突触后膜的受体通道及蛋白(包括酶)组份和蛋白质分子构象的转变以及蛋白质分子单体(亚基)的聚合与解聚,必然引起其亚微形态的变化(增厚或变薄)。许多研究结果都已证明,PSD的形态变化是突触机能活动变化的重要结构基础,其厚度易受环境、行为训练、药物等因素的影响。PNS子代PSD增厚提示在没有外界干扰情况下子代脑内内环境已发生变化,突触后膜离子通道及其相关蛋白可能处于较高活化状态。此外,活性区长度增加,Sv较CON组显著增大,对应起来看,活性区加长有利于提高神经递质释放的可能性,而Sv增加也提示这样可能可以增加释放的递质与突触后膜相应受体结合的可能性。
PNS子代海马神经元数目减少,突触密度下降,以及突触结构本身形态的改变提示PNS子代海马发育偏离了正常轨迹,这也提示PNS可能对突触可塑性本身造成不利影响,进而可能影响其行为的可塑性。突触具有可塑性,使其在结构和功能方面发生改变以应对大量的刺激和/或事件;而且这种可塑性伴随机体一生,可能是机体学习和适应环境改变的主要机制。可塑性大则学习能力相对较强,机体的适应性也就相对较强。PNS子代在没有外界干扰的情况下突触形态结构的改变以及突触密度的减少,PNS子代空间学习能力下降,这从行为学角度也支持PNS对子代突触的可塑性可能有不利影响,进而影响了其行为的可塑性。由
于PNS可引起子代体内内分泌激素等的长久改变,因此,推测它对突触形态可塑性的影响也可能是长期存在的。受体通道介导的钙暂态曲线通过对钙信号的表达式进行时间数值积分,在一定频率的输入条件下,得到了不同频率突触前刺激(持续时间1s)引起的突触后钙暂态仿真曲线(Fig 1)。Fig 1A和B中幅值最大的两条曲线分别为1 Hz和100 Hz的突触前刺激引起的钙暂态仿真曲线,另外的两条曲线分别反映了不同的NMDA受体通道亚型所介导的钙电流成分。2LTP和LTD诱导下NMDA受体亚型的通道阻断仿真将式描述的钙信号的模型作为激励元件,与13中方程组所描述的钙信号通路模型的动力学方程系统联立,得到一个突触后钙信号网络模型,在一定的突触前输入频率下,通过数值积分方法运行仿真,可以得到Fig 2的结果。 突触前部(presynapticelement)神经元轴突终末呈球状膨大,轴膜增厚形成突触前膜(presynapticmembrane)
厚约6~7nm。在突触前膜部位的胞浆内,含有许多突触小泡(synapticvesicle)以及一些微丝和微管、线粒体和滑面内质网等。突触小泡是突触前部的特征性结构,小泡内含有化学物质,称为神经递质(neurotransmitter)。各种突触内的突触小泡形状和大小颇不一致,是因其所含神经递质不同。常见突触小泡类型有:①球形小泡(sphericalvesicle),直径约20~60nm,小泡清亮,其中含有兴奋性神经递质,如乙酰胆碱;②颗粒小泡(granularvesicle),小泡内含有电子密度高的致密颗粒,按其颗粒大小又可分为两种:小颗粒小泡直径约30~60nm,通常含胺类神经递质如肾上腺素、去甲肾上腺素等;大颗粒小泡直径可达80~200nm,所含的神经递质为5-羟色胺或脑啡肽等肽类;③扁平小泡(flatvesicle),小泡长径约50nm,呈扁平圆形,其中含有抑制性神经递质,如γ-氨基丁酸等。 各种神经递质在胞体内合成,形成小泡,通过轴突的快速顺向运输到轴突末端。新近研究发现在中枢和周围神经系统中,有两种或两种以上神经递质共存(coexistenceneurotransmitter)于一个神经元中,在突触小体内可有两种或两种以上不同形态的突触小泡。如交感神经节内的神经细胞,有乙酸胆碱和血管活性肠肽(acetylcholineandvasoactiveintestinalpolypeptide)。前者支配汗腺分泌;后者作用于腺体周围的血管平滑肌使其松弛,增加局部血流量。神经递质共存的生理功能,是协调完成神经生理活动作用,使神经调节更加精确和协调。,许多事实表明,递质共存不是个别现象,而是一个普遍性规律,有许多新的共存递质和新的共存部位已被证实。其中多为非肽类递质(胆碱类、单胺类和氨基酸类)和肽类递质共存。
关于突触小泡的包装、储存和释放递质的问题,现已知突触体素(synaptophysin),突触素(synapsin)和小泡相关膜蛋白(vesicleassociatedmembraneproteinVAMP)等三种蛋白与之有关。突触体素是突触小泡上Ca2+的结合蛋白,当兴奋剂到达突触时,Ca2+内流突然增加而与这种蛋白质结合,可能对突触小泡的胞吐起重要作用。突触素是神经细胞的磷酸蛋白,有调节神经递质释放的作用,小泡相关膜蛋白(VAMP)是突触小泡膜的结构蛋白,可能对突触小泡代谢有重要作用。 突触间隙(synapticspace)是位于突触前、后膜之间的细胞外间隙,宽约20~30nm,其中含糖胺多糖(如唾液酸)和糖蛋白等,这些化学成分能和神经递质结合,促进递质由前膜移向后膜,使其不向外扩散或消除多余的递质。 突触的传递过程,是神经冲动沿轴膜传至突触前膜时,触发前膜上的电位门控钙通道开放,细胞外的Ca2+进入突触前部,在ATP和微丝、微管的参与下,使突触小泡移向突触前膜,以胞吐方式将小泡内的神经递质释放到突触间隙。其中部分神经递质与突触后膜上的相应受体结合,引起与受体偶联的化学门控通道开放,使相应的离子经通道进入突触后部,使后膜内外两侧的离子分布状况发生改变,呈现兴奋性(膜的去极化)或抑制性(膜的极化增强)变化,从而影响突触后神经元(或效应细胞)的活动。使突触后膜发生兴奋的突触,称兴奋性突触(exitatorysynapse),而使后膜发生抑制的称抑制性突触(inhibitorysynapse)。突触的兴奋或抑制决定于神经递质及其受体的种类,神经递质的合成、运输、储存、释放、产生效应以及被相应的酶作用而失活,是一系列神经元的细胞器生理活动。一个神经元通常有许多突触,其中有些是兴奋性的,有些是抑制性的。如果兴奋性突触活动总和超过抑制性突触活动总和,并达到能使该神经元的轴突起始段发生动作电位,出现神经冲动时,则该神经元呈现兴奋,反之,则表现为抑制。化学突触的特征,是一侧神经元通过出胞作用释放小泡内的神经递质到突触间隙,相对应一侧的神经元(或效应细胞)的突触后膜上有相应的受体。具有这种受体的细胞称为神经递质的效应细胞或靶细胞,这就决定了化学突触传导为单向性。突触的前后膜是两个神经膜特化部分,维持两个神经元的结构和功能,实现机体的统一和平衡。故突触对内、外环境变化很敏感,如缺氧、酸中毒、疲劳和麻醉等,可使兴奋性降低。茶碱、碱中毒等则可使兴奋性增高。
化学突触以神经递质作为传递信息的媒介,是一般所说的突触
超微结构有突触前成分、突触间隙、突触后部分、突触小体和突触小泡。
当神经冲动沿轴膜传导到轴突终末时,可引起突触前膜内的 Ca 通道开放, Ca 由细胞外进人突触小体,在 ATP 的参与下使突触素发生磷酸化。磷酸化的突触素与突触小泡的亲和力降低,因而小泡分离,致使突触小泡脱离细胞骨架,移至突触前膜并与之融合,通过出胞作用释放小泡内容物突触间隙。突触后膜中的受体与特异性神经递质结合后,膜内离子通道开放,改变突触后膜两侧的子分布,使突触后神经元(或效应细胞)出现兴奋性或抑制性突触后电位。
锋电位的幅度、进入前膜Ca2+的数量锋电位的幅度。突触前膜即突触前成分相对应的胞膜,神经元轴突末梢的分支膨大构成突触小体,突触小体膜称为突触前膜,影响突触前膜递质释放量的因素有锋电位的幅度、进入突触前膜的Ca2+数量。突触前膜是指神经元的轴突凸起形成突触小体,可通过释放化学递质,完成信息的传导和交换。
在光学显微镜下,一个神经元的轴突末梢经过多次分支,最后每一小支的末端膨大呈杯状或球状,叫做突触小体。这些突触小体可以与多个神经元的细胞体或树突相接触,形成突触。
从电子显微镜下观察,可以看到,这种突触是由突触前膜、突触间隙和突触后膜三部分构成。
电镜下观察无脊椎动物和低等脊椎动物的神经组织时,发现神经元之间的任何一部分都可以彼此形成突触,如树突-树突型突触、树突-胞体型突触和胞体-胞体型突触等。但这三种突触常为生物电传递突触,其结构特征是突触间隙极窄,只有约20~30埃。它们联接的形式为低电阻的缝隙连接。
扩展资料突触分类:
1、电突触
在突触前神经元(神经末端)与突触后神经元之间存在着电紧张偶联(electrotonic coupling),突触前产生的活动电流一部分向突触后流入,使兴奋性发生变化,这种型的突触称为电突触。突触前膜与突触后膜间以间隙连接相连,两胞膜之间以原生质相通,神经冲动直接通过。
见于腔肠动物,蚯蚓,虾,软体动物等无脊椎动物,也存在于平滑肌之间,心肌细胞之间,感受器细胞与感觉神经元之间。
2、化学性突触
由突触前部,突触间隙,突触后部三部分构成。无脊椎动物中,轴突多于其他神经元的树突形成突触。而在脊椎动物中,轴突可与树突相连,但更多的与胞体相连形成突触。
-突触
突触是突触前膜+突触间隙+突触后膜
神经元轴突末端膨大的结构就是突触小体,突触小体里面有许多突触小泡,突触小泡里面最有用的化学物质就是神经递质啦受到刺激后,突触小泡移动到突触前膜那里,小泡的膜和突触前膜融合,就把神经递质释放出来了突触前膜其实就是突触小体靠近突触间隙的那一点点的膜
欢迎分享,转载请注明来源:品搜搜测评网