判断金属元素很简单的方法就是:煅烧法。
每种金属元素在煅烧的时候,颜色不一样。比如钠是**。
如果要鉴定金属元素的含量:
1光谱分析仪。优点是一次可以分析多种元素,精度较高。缺点是价格太高,一套几十万到上百万,所以目前只有少数大型企业使用。
2分光光度计。优点是检测波长选择方便,价格不高。缺点是检测结果不能直接显示(要换算);没有曲线建立调用功能,检测不同元素每次要重新定标;比色皿放入和倒出液体不方便;对操作人员的化学分析基础知识要求高,因此不能适应企业现场在线检测分析的需要。
3比色元素分析仪。优点是使用方便,价格也不高,对操作人员的化学分析基础要求不高,因此被广泛用于企业生产检验现场分析。但由于其产生的历史原因,存在以下先天性缺陷。
具体的怎么操作,希望你多多上网查质料。
卌你好,我知道有两种方法可以检测金属材质中的化学成分,一是用直读光谱仪(ICP)可以检测出金属的全部化学元素,包括碳元素,但是这种方法比较麻烦,另一种是X荧光光谱仪,这种方法主要特点是准确、快捷、方便的检测出金属中化学成分。187215后面是60502(林)
卌
有色金属矿石成分检测:
对于有色冶炼企业来说,原料成分的稳定性至关重要,它会对几乎所有工序的生产稳定性产生影响,因此,在预均化堆场、原料磨配料控制等工艺中,矿石成分的分析是必不可少的,目前大多数生产企业采用人工取样+实验室分析的方案,在取样、制样和分析过程中会耗费大量的人力物力,而且会带来分析时效滞后和人为误差影响两大难题,很难发挥调整生产的作用。
矿石成分在线检测技术取消了人工取样、制样、化验等环节,实时对矿石进行分析并将结果发送至控制系统,具有矿石成分代表性强、实时可靠、减少取样人员、降低生产成本等特点,可以及时调整配矿方案,提高生产效率。目前矿石成分在线检测的主流技术有中子活化技术(Prompt Gamma-ray Neutron Activation Analysis,简称PGNAA)和近红外光谱分析技术(Near Infra-Red Technology,简称NIR)。
每种元素对中子活化过程的反应不尽相同,这表现在两个方面。一方面是一些元素的活化性比另一些元素要高,例如铁、硫和氯非常活跃;而碳和氧的惰性很高。各元素间的另一个关键不同点在于每种元素会放射出(具有已知概率)独特的一组γ 射线能量。例如,氯元素会放射出能量不同的γ 射线,最有名的是442 和642 MeV。通过特定仪器来检测特征γ 射线的能量可辨别物料中元素的种类,通过检测特定能量γ 射线的数量可辨别该元素的质量百分含量。
PGNAA技术对各种元素含量的敏感性
NIR技术原理:
近红外光NIR是介于可见光(VIS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。
近红外光谱区域
由于不同的物质含有不同的基团,不同的基团有不同的能级,不同的基团或同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而如果近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样反射后的近红外光线在某些波长范围内会变弱,这样红外光线就携带样品组分和结构的信息。通过检测器分析反射光线的光密度,就可以确定该组分的含量。
PGNAA与NIR技术主要特点对比
总的说来,PGNAA技术的主要优势在于对样品进行穿透性整体检测,不受矿石表面情况影响,但设备具有放射性,许可及操作相对复杂,且受负荷变化影响;而NIR技术的主要优势在于无放射性,维护简单,检测不受负荷变化影响,可在物相层面检测而不仅仅只是元素含量,缺点是只能检测皮带上层矿石的表面,即“可见”部分,且受粉尘及矿石表面情况影响。在实际应用中,可依据具体工况进行选择。
鉴定金属由哪些元素所组成的试验方法称定性分析,测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的独特化学性质,利用化学反应,对金属材料进行定性或定t分析。定量化学分析按最后的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,最后用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量。由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。光学分析法是根据物质与电磁波(包括从丫射线至无线电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(红外、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法(看谱分析)、浊度法、火焰光度法、X射线衍射法、X射线荧光分析法以及放射化学分析法等。电化学分析法是根据被测金属中元素或其化合物的浓度与电位、电流、电导、电容或电量的关系来进行分析的方法。主要包括电位法、电解法、电流法、极谱法、库仑(电量)法、电导法以及离子选择电极法等。仪器分析的特点是分析速度快、灵敏度高,易于实现计算机控制和自动化操作,可节省人力,减轻劳动强度和减少环境污染。但试验装工通常较庞大复杂,价格昂贵,有些大型、复杂、精密的仪器只适用于大批量和成分较复杂的试样分析工作。
欢迎分享,转载请注明来源:品搜搜测评网