新建一个txt文档,后缀改为SPS,用双击spss打开,把下面的语法文件拷贝进去,把变量/VARIABLES后面的b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11……改为你需要分析主成分的变量,然后全部选中。右击,选择Run Current就可以出结果了/为注解,不会影响语法运行。结果在Total Variance Explained表格中我用的是spss115不同版本语法都差不多的
语法:
/ 主成分分析语法,右击,选择Run Current就有结果了
FACTOR
/VARIABLES b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 /MISSING LISTWISE /ANALYSIS
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21
b22 b23 b24 b25 b26 b27 b28 b29 b30
/PRINT INITIAL KMO EXTRACTION ROTATION FSCORE
/FORMAT SORT BLANK(10)
/PLOT EIGEN ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION
因为对阁下的题目不了解,所以不知道上图中的结果代表什么含义。
你的理解是正确的,主成分分析得到的主成分是一个综合性指标。
从数学的运算来看,主成分分析的过程只是在原来的相关系数矩阵上做了一个正交旋转。而降维处理应该体现在“选取”二字上(根据特征值大小筛选)。这是因为特征值(也就是图中的贡献率)反映了对应的主成分包含的信息量,一般都是选累积贡献率达到85%以内的,换个说法就是选取的主成分含有85%的信息量。
通常由于主成分分析得到的主成分是多个变量的综合,它们的实际意义很难解释,我们可以在最后的结果基础上再做一次旋转,使每个主成分与一定向量的相关性提高,从而可以更容易地解释。在SPSS中应该有这么一个选项,通常都是选择方差最大的旋转(因为用的是英文版,不清楚中文翻译是什么,英文是factor->rotation->varimax)。
你可以试试。
老大,首先,你上传的图我无法看清。
其次,用SPSS软件做主成分分析也没那么复杂,不过你要钻研一番。下面的说明及举例希望可以对你有帮助:
主成分分析法在SPSS中的操作
1、指标数据选取、收集与录入(表1)
2、Analyze →Data Reduction →Factor Analysis,弹出Factor Analysis 对话框:
3、把指标数据选入Variables 框,Descriptives: Correlation Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK。
注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。
从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。
主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。
用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“Transform→Compute Variable”, 在Compute Variable对话框中输入“A1=B1/SQR(722)”[注: 第二主成分SQR后的括号中填1235, 即可得到特征向量A1(见表6)。同理, 可得到特征向量A2。将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分表达式[注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。
标准化:通过Analyze→Descriptive Statistics→Descriptives 对话框来实现: 弹出Descriptives 对话框后, 把X1~X10 选入Variables 框, 在Save standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填入数据窗口中, 并以Z开头命名。
以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:
根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行排序, 即可对各地区进行综合评价比较, 结果见表8。
具体检验还需进一步探讨与学习
如何用SPSS软件进行主成分分析郭显光摘要文章指出《统计分析软件SPSS/PC+》中主成分分析举例中的一处错误,比较了主成分分析和因子分析的异同,进而指出用SPSS软件不能直接进行主成分分析。作者根据主成分分析和因子分析的关系,提出一种先用SPSS的PC法得出因子载荷阵,然后求出特征向量,建立主成分模型的主成分分析计算方法。关键词主成分分析因子分析因子载荷阵特征向量一、关于主成分分析举例中的一处错误在SPSS的高级统计分析命令中,有因子分析的功能。例如,用FACTOR命令可以进行因子分析,用EXTRACTION子命令可以输出因子模型阵、变量被解释的因子方差、所提取的因子特征根和每个特征根代表的变量X总方差的百分比。在使用该命令时,可以指定提取因子的方法,包括PC(主成分法)、PAF(主轴因子法)等等,也可以指定因子旋转方式。在童忠勇教授主编的《统计分析软件SPSS/PC+》(陕西人民教育出版社,1990年)一书中,第213-215页给出了一个例子:某地区对下属12个县人口调查,其中5个经济变量为:X1(住户数)、X2(学校数)、X3(就业人数)、X4(年收(本文共计5页)
欢迎分享,转载请注明来源:品搜搜测评网