污水可以分为这四类。
title
第一类:工业废水 来自制造采矿和工业生产活动的污水,包括来自与工业或者商业储藏、加工的径流活渗沥液,以及其它不是生活污水的废水。
第二类:生活污水 来自住宅、写字楼、机关或相类似的污水;卫生污水;下水道污水,包括下水道系统中生活污水中混合的工业废水。垃圾、各种大气颗粒物沉降等[3] ,通过地表径流、土壤侵蚀、农田排水等形式进入水体环境所造成。具有分散性、隐蔽性、随机性、潜伏性、累积性和模糊性等特点,因此不易监测、难以量化,研究和防控的难度大。水污染物(waterpollutant)排入水体中引起污染的物质。
第三类:商业污水 来自商业设施而且某些成分超过生活污水的无毒、无害的污水[2]。如餐饮污水。洗衣房污水、动物饲养污水,发廊产生的污水等。
第四类:表面径流 来自雨水、雪水、高速公路下水,来自城市和工业地区的水等等,表面径流没有渗进土壤,沿街道和陆地进入地下水。
成分不能完全说出来,但主要成分的话还是可以说出一部分的。这些污水主要从哪里来的呢?生活中。好像废话了,但也废话了。但是可以从中看出一些东西啊!生活中,洗衣、做饭、清洗……这样就可以发现了,这些污水的主要部分还是那些洗涤剂之类的出处。
生活污水domestic sewage,domestic wtewater 生活污水是指城市机关、学校和居民在日常生活中产生的废水,包括厕所粪尿、洗衣洗澡水、厨房等家庭排水以及商业、医院和游乐场所的排水等。主要成分是粪便和洗涤污水。城市每人每日排出的生活污水量为150—400L,其量与生活水平有密切关系。生活污水中含有大量有机物,如纤维素、淀粉、糖类和脂肪蛋白质等;也常含有病原菌、病毒和寄生虫卵;无机盐类的氯化物、硫酸盐、磷酸盐、碳酸氢盐和钠、钾、钙、镁等。总的特点是含氮、含硫和含磷高,在厌氧细菌作用下,易生恶臭物质。
合理的识别污水中污染物的组成对于系统的设计以及运营维护有特别重大的意义。
污水中的主要成分可以氨气来源分,按其性质分,按其特点分。在国际水协会IWA建立活性污泥数学模型ASM1的时候推出了污水处理过程中的十三个组成部分,后续其它的模型中也会引入不同的参数。
为了便于交流,公认的污水组分表达的notation包括
S-Soluble material, 这个一般指可以通过045um膜的组分,但也有用别的类型的膜进行过滤测试的,因此一定要搞清楚当我们说Soluble时候的Soluble的cutoff 是什么。
X-Suspendid solids这可以表示水中的颗粒性即不能通过过滤膜的成分,也用来表达水中各种微生物组分。
I-Inert 表示惰性部分
另外C-Colloidal也经常会被用来表示水中呈胶体装台的污染物或者组分。
由于城市污水管网差异,当地气候条件,居民生活条件的差异,一般来说很难对污水成分进行概述,但也会有一些数值被拿来作为典型城市污水的特点。
不管怎么讲以及在什么时候,采样以及分析的样品的代表性是非常重要的。不管是利用当前监测数据或者是类似场地项目数据的时候一定不能忘记预测未来的发展变化,这些发展变化不仅仅是水量,也包括各种因素引起的水质发生变化。
书上说过去利用mg/L 这种方式表示水质情况在21世纪来说已经过时了,大家应该多用the constituent mass discharge rate on a per capita basis这种当量表达的方式相对来说比浓度来预测要简单一些。
下面的表格在学习水处理原理及技术的时候非常的不重要,但涉及到具体的工程实践实际的时候,这些背景值一定要作为参考资料,这样才能有效的评价我们自己的数据的有效性。
Per capita Mass constituent Discharges in The United States (the total mass of waste discharged per person per day (dry weight basis) from individual residences
在污水处理厂设计过程中,以下指标的具体浓度值得关注:
1碳组分含量Carbonaceous constituents
2 含氮组分,Nitroghenous compounds
3含磷组分Phosphorus compounds
4固体组分, Total and volitaile suspended solids
5 碱度。一般会转换为CaCO3的浓度来表示。
在进行污水处理过程中,常有如下的一些指标被用以描述污水。
Carbonaceous constituents
BOD
BOD 一般使用5日生化需氧量
sBOD 溶解性五日生化需氧量
UBOD 生化需氧量,对于UBOD/BOD值为15的市政废水来说,bCOD/BOD大约为16到17
对于典型市政污水来说,UBOD/BOD=15,fd=015, YH=04 bCOD/BOD=164
COD
TCOD,CODT, 总化学需氧量
bCOD 可生物降解化学需氧量
pCOD 颗粒型化学需氧量
sCOD 溶解性化学需氧量
nbCOD 不可生物降解需氧量
rbCOD Ss readily biodegradable化学需氧量,可以直接被微生物利用,is assimilated quickly by the biomass,rbCOD对于微生物的动力学参数以及工艺运行有直接的影响。这一部分COD浓度高会提高硝酸盐还原速率,在除磷系统中可以很快转化为VFA然后为PAOs使用。准确的测量rbCOD对于强化生物除磷系统的模拟及预测很重要。但是rbCOD依然还有除了VFA以外的成分。对于活性污泥系统来说,较高浓度的rbCOD以为着菌胶团细菌可以得到更多的基质,从而有利于絮体的增长,最终形成沉降性能更优的微生物絮体。
bsCOD 可生物降解的溶解性的COD
bcolCOD 可生物降解的胶体态COD,需要被酶水解后以较慢的速度被微生物利用
sbCOD Xs 慢速生物降解COD
bpCOD Xsp 可生物降解的颗粒态的COD,需要被酶水解后以较慢的速度被微生物利用
nbpCOD Xi 不可生物降解的颗粒态COD这部分的COD依然是有机物,尽管不能被微生物利用,但会成为挥发性悬浮固体物质的成分。
nbsCOD Si 不可生物降解的溶解态COD
Nitrogen
TKN 总凯氏氮,包括氨氮和有机物中含的氮,进水中大约60%到70%的凯氏氮都是氨氮。
bTKN 可生物降解的TKN
sTKN 溶解性的TKN
ON 有机氮含量,有机氮包括溶解性的和颗粒态的,其中一部分是惰性的。
NH4-N Snh4 氨氮浓度
bON
nbON 不可生物降解的有机氮,一般来说不可生物降解的有机氮占VSS(以COD计)的6-7%
pON
bpON 颗粒态的有机氮,由于需要水解以后才可以被微生物利用,因此颗粒态的有机氮的利用速率比较低。
nbpON 不可生物降解的颗粒态有机氮
sON 溶解性有机氮
bsON 可生物降解的溶解性有机氮
nbsON nonbiodegradable soluble organic nitrogen,浓度一般为1-2mg/L
Phosphorus
TP 总磷
PO4 正磷酸盐
bpP
nbpP
bsP
nbsP
Suspended solids
TSS
VSS
nbVSS 不可生物降解的挥发性悬浮固体,这部分的VSS大致上等于nbpCOD
iTSS 惰性总悬浮固体浓度
上面所列的组分尽管存在这样的定以,其具体浓度依然受实验操作及实验条件等影响。
欢迎分享,转载请注明来源:品搜搜测评网