主成分分析不是一个独立的统计阶段,而是一个初步结果,其应用有两个方面:
一是主成分评价,另一个是主成分回归。这里,我只给您介绍主成分评价。
主成分评价的步骤:
第一步,对原始数据进行无量纲化处理,公式是减均值比上标准差。
如果用统计软件SPSS操作,则点击菜单“分析---描述统计---描述”,把全部变量选进变量框,勾选“将标准化得分另存为变量”,然后点确定,
第二步, 计算特征根、方差贡献率、累计方差贡献率以及主成分载荷矩阵
在SPSS点击菜单“分析--降维--因子分析”,把标准化后的所有变量调入变量框,确定。得表1和表2。表1给出了两个主成分的特征根,分别是5624和1997(例)。
表1 方差分析表
表2(例) 主成分矩阵
第三步,提取主成分
由表1可知,提取了两个主成分,这两个主成分的累计方差贡献率高达95261%,表明提取前两个主成分可以基本反映全部8个指标所具有的信息。
第四步,计量特征向量
特征向量等于主成分矩阵(表2)除以特征值的平方根。表3即计算出的两个特征向量:
表3 特征向量表
第五步, 计算主成分得分
利用这两个公式可以求出两个主成分F1和F2的得分。
第六步,计算综合得分
表9从略。
主成分分析不需要旋转,因子分析才需要。
希望能帮上您!刘得意统计服务
1输入数据。
2点Analyze 下拉菜单,选Data Reduction 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
统计专业研究生工作室原创,请勿复杂粘贴
在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,
形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
扩展资料:
主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,
使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。
-主成分分析法
主成分分析PCA是一种简化数据集的技术。
它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。
主成分分析的运作:
获取数据集,计算数据的协方差矩阵,计算特征值和特征向量除以协方差矩阵,选择主成分,从选定的组件构造新的特征数据集。
iris数据集是本文中的目标数据集。数据有4个特征或变量;或矩阵代数中的4维。并且,1个目标向量显示依赖于4个特征的花的类型。所以,问题在于四维。4D并不多,但会尝试将其缩小为2D以说明PCA。
(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。
(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。
(3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1jX1 +β2jX2 +β3jX3 + ……+ βnjXn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。
(4)求出指标权重。 ωi=[(m∑j)βijej]/[(n∑i)(m∑j)βijej],ωi就是指标Xi的权重。
扩展资料
产品特点
1、操作简便
界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。
2、编程方便
具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。
对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。
3、功能强大
具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
-spss
在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。
(一)主成分分析的基本原理
主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:
灾害损毁土地复垦
如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:
灾害损毁土地复垦
系数lij由下列原则来决定:
(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;
(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。
依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。
(二)主成分分析法的步骤
(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。
(2)计算标准化的相关数据矩阵:
灾害损毁土地复垦
(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。
(4)选择重要的主成分,并写出其表达式。
主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:
灾害损毁土地复垦
这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。
另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。
(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:
灾害损毁土地复垦
(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。
(三)主成分分析法的评价
通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。
需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。
PCA把原先的n个特征用数目更少的m个特征取代,新的m个特征一要保证最大化样本方差,二保证相互独立的。新特征是旧特征的线性组合,提供一个新的框架来解释结果。
PCA的原理就是维数投影,通俗的说可以把3维或者更zhi高维数投影到2维或者1维坐标上,PC1和PC2就是主元得分,三维的点投影到二维的位置就是主元得分,其次怎么确定投影坐标的维数呢,需要一个累计贡献率去做,比如保证百分之85的信息,再去确定其坐标维数;
计算的话,先算协方差,然后确定特征向量和特征值,通过累计贡献率算维数,然后原有数据乘以特征矩阵得到得分值,具体的你可以看看文献内容。
扩展资料:
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
参考资料来源:-主成分分析
用SPSS做主成分分析时,因为软件只有因子分析,所以对求出来的因子系数矩阵要进行计算得到相应的主成分系数。具体步骤是用每一列的因子除以相对应的特征值的开方(在spss下的transform—compute
variable进行计算就可以)。
求出主成分系数后,乘以标准化后的原始数据(spss中的描述性统计分析就可以做到),得到的就是主成分矩阵。至于你问的综合主成分计算,是最后一步了,用主成分矩阵乘以相应方差贡献率就是综合主成分值了。
你可能是把主成分分析和因子分析混淆了,因为只有因子分析才涉及到因子得分系数矩阵,不过其实很多人都会混了,因为两种方法实在是太像了,主成分可能用SPSS计算相对麻烦,因子分析还好。不过具体问题具体分析。如果你会SAS那就方便多了,编程自己需要的程序,但是需要一定基础。
欢迎分享,转载请注明来源:品搜搜测评网