炼钢工艺过程
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于02%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、 TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有 “气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
真空脱气钢是由初炼钢液通过后期的炉外精炼处理得到。炉外精炼是指将转炉、平炉或电炉中初炼过的钢液移到真空、惰性气体或还原性气氛的特殊容器中,进行脱气、脱氧、脱硫、去除夹杂物和进行成分微调等精炼工艺。炉外精炼钢硫、磷含量低,夹杂物少,化学成分控制适当。炉外精炼钢的主要品种为特殊质量的碳素钢、低合金钢和合金钢。国内真空脱气一般在VD或VOD炉内进行(极限真空度一般在60-70Pa),真空度300Pa下保持10min,将钢液中的气体脱去,要求严格的军工钢种等需要300Pa下保持15min。
电炉真空脱气钢一般的工艺路线为:EAF+LF+VOD/VD+VHD/LF-浇注钢锭。
电渣钢是指电炉炉外精炼后, 进行电渣重熔冶炼,原理是电流通过液态渣池渣阻热,将金属电极熔化,熔化的金属汇集成熔滴,滴落时穿过渣层进入金属熔池,然后于水冷结晶器中结晶凝固成钢锭。因电渣的渣系有过滤夹杂的作用,电渣重熔后的钢更为纯净。电渣炉分为普通电渣炉、保护气氛电渣炉、加压电渣炉等,根据不同需要进行选择。
电渣钢一般的工艺路线为:EAF+LF+VOD/VHD-浇注电极棒-ESR(电渣)-电渣锭热加工成不同规格的钢材。真空脱气钢通过电渣重熔后气体含量有不同程度的增加。 单从钢的气体含量来对比来看,真空感应+真空自耗钢气体含量最低。
这两者之间有关系。
在钢的生产中,将转炉、平炉或电炉中初炼过的钢液移到真空、惰性气体或还原性气氛的特殊容器中,进行去除夹杂物和进行成分微调等精炼工艺制成的钢为真空脱气精炼钢,所以两者有关系。
精炼与真空脱气都是在钢铁生产行业里的重要工序,没有这两个工序就不能制造出符合相关要求的钢,在某些精密的仪器上的零件就无法正常工作,精炼和真空脱气对多个行业都具有重要的影响。
一:牌号0Cr25Ni20奥氏体铬镍不锈钢
二:化学成分
C :≤008, Si :≤1500, Mn :≤200, P :≤0035, S :≤0030, Ni :≤1900-2200,
Cr :≤2400-2600
三:应用范围应用领域:
冲压模具,夹具,工具,规、裁纸刀、辅助工具等
改善通常碳素工具钢易碎裂的性质,而达到延长工具的寿命。真空脱气精炼钢,质量稳定。淬透性良好,油冷淬硬(淬裂和变形少)韧性和耐磨性良好,工具经久耐用。
四:物理性能
抗拉强度(бb)(Mpa) :≥520 屈服强度(σs)(Mpa) :≥205 面积缩减(ψ)% :≥50
机械性能ób(MPa)≥520,ó02(MPa)≥205 ,δ5(%)≥40, Ψ(%)≥50,HB≤187 能耐1150℃以上高温。熔点在1398℃~1454℃
五:概况
310S不锈钢是奥氏体铬镍不锈钢,具有很好的310S不锈钢抗氧化性、耐腐蚀性,因为较高百分比的铬和镍,使得拥有好得多蠕变强度,在高温下能持续作业,具有良好的耐高温性。因镍(Ni)、铬(Cr)含量高,具有良好耐氧化、耐腐蚀、耐酸碱、耐高温性能,耐高温钢管专用于制造电热炉管等场合,奥氏体型不锈钢中增加碳的含量后,由于其固溶强化作用使强度得到提高,奥氏体型不锈钢的化学成分特性是以铬、镍为基础添加钼、钨、铌和钛等元素,由于其组织为面心立方结构,因而在高温下有高的强度和蠕变强度。熔点1470℃,800℃开始软化,许用应力持续降低。
张 卫 陆黄生
(中国石化石油工程技术研究院,北京 100101)
摘 要 针对钻井液气测录井脱气不定量、分析成分少的问题,设计了一种新型的钻井液油气分析系统。系统脱气单元采用半透膜分离原理,脱气器可直接插入钻井液中提取分析成分,摆脱了传统电动脱气方式定量化弱的局限;系统分析单元采用了MEMS微型色谱,缩小了体积,扩展了在线分析的组分范围,可在线分析钻井液中油气成分。现场实验证明新型钻井液油气分析系统提高了油气检测的定量性和评价的准确性。
关键词 钻井液 油气 分析 半透膜 在线色谱
Development of a New Kind of Gas logging System
ZHANG Wei,LU Huangsheng
(Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101,China)
Abstract In light of non-quantitative degasification and few components for analysis in current traditional gas logging,a new type of gas logging system developedThe system adopts the semi-permeable membrane separation principle to make a pertinent degasification of hydrocarbon gasesThe degasser can be inserted directly into drilling fluid to extract the analysis componentThe analysis component of the system adopts the method of online -GC technologyThe wellsite test showed that the new system can raise the level of gas logging and improve the assessment exactness of oil and gas
Key words drilling fluid;oil-gas;analysis;semi-permeable membrane;online chromatogram
油气勘探钻井过程中,地层轻烃含量直接关联着地层油气储量[1],传统测定方法是将钻井液引入脱气器中进行搅拌脱气,分离出轻烃气体,再将其送入在线气相色谱进行分析,从而得到钻井液中的轻烃含量[2]。这种测定方法脱气不定量、检测不连续、信号延迟时间长,制约了气测录井服务质量。
本文结合国外气测录井行业的发展趋势[3~7],提出了一种测定钻井液中轻烃含量的新方法,在此基础上开发了新型气测系统。
1 系统原理
系统的结构原理如图1所示,分为样品脱气环节、样品处理环节、分析检测环节和评价解释环节。钻头在钻开地层后,井下油气被钻井液从井下循环到地面,脱气环节中的半透膜脱气器直接插入泥浆中,通过它把钻井液中的烃类油气定量提取出来;提取出来的样品进入样品处理环节,进行脱水、干燥、稳压、稳流处理;之后样品进入分析检测环节,通过在线的分析仪器将烃类样品成分检测出来;随后气体样品排出系统,检测的信息进入评价解释环节,通过工作站完成样品标定、数据处理和油气水的评价。
图1 油气检测系统原理
新型气测系统与常规气测录井系统分离—检测—评价的功能流程基本一致,但关键功能的实现手段有着显著区别。新型气测系统对脱气和气体检测两个关键环节进行了重新设计,新设计的系统脱气环节使用插入式半透膜定量脱气替代了传统的电动脱气,而新的气体检测环节将油气分析范围由常规系统的C1—C5扩展到C1—C8,并包括苯和甲苯。
2 技术关键
21 半透膜脱气器设计
样品脱气要充分考虑钻井液中烃类气体的模态变化和钻井液的循环工艺。首先要让钻井液尽量少接触空气,其次是减少因为钻井液的流量、温度等因素变化造成的影响。综合各种样品萃取的利弊,选用半透膜方式脱气具有很好的针对性。
半透膜是由高分子聚合物材料制备的薄膜,其具有选择性透过功能,可针对性地分离液体中特定组分,在化工分离工程中应用广泛。目前Schlumberger 、Halliburton等公司正应用半透膜分离技术开展研究,并取得了一定成果。适合钻井液油气脱出的半透膜应只允许检测所需的烃类及苯类分子以气体状态通过,并完全禁止泥浆通过,以保护后续检测单元。利用半透膜从钻井液中直接分离组分的原理如图2所示。
图2 半透膜工作原理
在膜的内外两侧,由于烃类组分存在不同的渗透压力,使钻井液中的烃类气体穿过半透膜,并以气体的形式通过载气输送至气相色谱仪等检测仪器进行分析,达到分离—检测的目的。利用半透膜作为定量分析手段,检测结果能够真实反映钻遇地层流体的油气组成比例及性质。
由于半透膜需直接接触钻井液进行油气组分分离,其工作环境恶劣,并且工作温度高,普通膜材料难以达到要求,因此半透膜选择上既要保证油气组分透过,又要重点考虑膜的强度和耐温性。初步选择PE(聚乙烯)、PTFE(聚四氟乙烯)及PDMS(硅橡胶)为膜材料,通过化学聚合反应制备了中空纤维聚合物复合膜。PE膜在实验温度为40℃、80℃时无检测信号,在温度升至100℃时熔化,耐温性能差。PTFE膜在40℃、80℃ 、100℃、120℃有检测信号,但检测信号很小,说明PTFE的透过性不好。PDMS膜在温度高于50℃时的谱图均有信号。因此,选用PDMS膜作为钻井液中轻烃气体的分离膜。通过性能测试,制备的PDMS复合半透膜强度、耐温性及透过性适合钻井液泥浆工作条件,脱出油气组分能够满足后续检测单元需求。表1为PDMS复合膜对气体组分的渗透系数。
表1 气体组分的PDMS膜渗透系数
考虑到钻井液的化学性质及恶劣的工作环境,半透膜脱气器封装采用了图3所示的设计结构,脱气器整体为全不锈钢插头式,长度为15cm,使用的中空纤维膜膜管外径为08mm,内径为05mm,中空纤维膜覆盖部分即有效探头长度为10cm,中空纤维膜置于探头表面的凹槽内,凹槽起到一定的保护和固定作用。脱气器内置温度计凹洞接口,插入热电阻即可在执行测量任务的同时监控温度,帮助校正半透膜的渗透效率。
图3 钻井液半透膜脱气器结构
22 在线油气分析单元设计
气体检测单元是系统核心模块之一。传统的气体检测一般采用FID +色谱的检测方式,使用氢火焰离子化检测器需要配备氢气和氧气,这样既增加了气相色谱仪的使用成本,而且使用氢气具有一定的危险性。仪器房一般离脱气环节几十米远,样品气输送存在滞后的问题且受温度影响。因此新气测系统设计关键是解决样品快速分析问题、样品气输送问题。同时,仪器也要体积较小,可以现场安装。
本文设计继续选用了在线气相色谱分析原理,但是在仪器上选用了Agilent的490 Micro GC便携式气相色谱仪。490 Micro GC使用的微型热导检测器(μTCD)比传统的热导检测器灵敏度高10倍,能够精确地分析出项目所需要参考的指标气体,整个系统具有速度快、便携、适应野外工作的优点。
本设计主要是规划了在线色谱的分析流程和优化了色谱柱的性能。在线色谱的分析采用模块化组合,设计了双分析通道,为了克服C5之后样品液化的问题,在进样口、色谱柱、检测器都进行了保温设计,以保证样品分析的准确性。每个通道流程如图4所示。
图4 检测通道原理
气体检测可同时进行两个通道样品分析,每个通道包括微电子气体控制(EGC)、进样器(Injector,包括样品加热装置和样品定量管)、气体分离柱(Column)、微热导检测器(μTCD)。色谱柱选用不同填料用于不同成分的针对性分析,以提高分析实效及精度。其中分离柱一采用10m PoraPLOT Q色谱柱,用于分析CH4;分离柱二采用8m Sil 5CB色谱柱,用于分析高碳数烃类及苯类。色谱柱类型及系统运行参数见表2。
表2 通道类型及参数
由于设备气路比较精密,在设计中采用干燥过滤器对样品气进行干燥、过滤,过滤器采用5μm粉末冶金过滤片,另外本身色谱仪配有一个专用的可换过滤器作为最后的净化保证。为保证样品气输送的定量,保障后续检测单元测量精度,样品气流量使用质量流量阀定量控制。
23 系统软件设计
系统软件设计采用模块化设计,设计语言采用C#完成,软件主要功能为实现数据的实时采集、分析和解释评价,并将成果进行数据或图形输出。此系统功能模块包括控制模块、数据采集、显示模块、解释模块、模板建立、数据管理、成果输出等。整体架构如图5所示。此外,软件可以实现与综合录井仪的通讯,将采集的气体成分数据送到综合录井仪中,也可以将综合录井仪的参数提取到工作站,单独进行油气分析及解释。
图5 软件功能架构图
3 实验与指标
31 现场实验
2011年9月,新型气测系统在中国石化中原油田胡XXX井和卫XXX井分别进行了现场气测录井测试。整套系统在胡XXX井连续进行了251h、281m进尺的录气测录井工作。在卫XXX井,系统连续进行了223h、1012m进尺的气测录井。同时由于卫XXX井在钻井过程中进行了混油钻进,系统完成了在混油状态下的气测录井测试。
整个测试期间,系统整体工作性能稳定,C1—C8的检测周期小于90s(图6),在钻井液混油的状态下,气测异常发现率为100%。现场测试证明了系统工作的可靠性,获得了现场第一手的数据。
图6 现场色谱分析
32 系统指标
新型钻井液油气含量检测系统的技术指标如表3所示。
表3 新型气测系统技术指标
4 结束语
新型气测录井系统使用膜分离脱气和多通道检测,具有检测范围扩大、定量化程度高、检测周期快速的优点。系统整体运行正常,现场实验达到了预期设计目的。系统的开发研制对提高油气评价的准确性,解决弱油气储藏发现的难题有着重要意义。
参考文献
[1]张卫,慈兴华,张光华,等钻井液气体分析检测技术研究天然气工业2006,26(5):64 ~66
[2]严国平,武庆河脱气器的现状及发展趋势探讨录井技术,1999,10(1):10~14
[3]Pop J J,Taherian R,Poitzsch M E,Tabanou J RDownhole measurement of formation characteristics while drilling[P]US:7458257,2008
[4]Coenen J G CSystem for detecting gas in a wellbore during drilling[P]US:73 18343,2008
[5]Jimmy LDetecting gas compounds for downhole fluid analysis[P]US:2010/0050761 A1,2010
[6]Wolcott D KUse of capillary-membrane sampling device to monitor oil drilling muds[P],US:5469917,1995
[7]黄小刚,廖国良,魏忠FLAIR井场实时流体检测系统[J]录井工程,2005,15(4):66 ~67
欢迎分享,转载请注明来源:品搜搜测评网