一、主体不同
1、镭射logo:利用镭射油墨(具有金属光学变色防伪油墨),采用先进的镭射印刷技术,将镭射油墨丝印或滚印在各种平整光滑的透明材料上的印刷技术
2、电蚀logo:电流在旋转中的轴承的滚道轮和滚动体的接触部分流动时,通过薄薄的润滑油膜发出火花,其表面出现局部的地熔融和凹凸现象。
3、丝印logo:用丝网作为版基,并通过感光制版方法,制成带有图文的丝网印版。
二、特点不同
1、镭射logo:将镭射效果作用在薄膜上,与原纸进行复合,然后将薄膜撕掉,使铝层转移到纸上。
2、电蚀logo:为电荷在正极电棒与负极电棒之间游动提供一种机理。这可以是电镀中的水溶液、或者应用的塑料、或者所有其他物质。即便是空气中的水分也能在反应中起到催化剂的作用。
3、丝印logo:丝网印刷墨层厚实、色泽鲜艳,所以在选择原稿及制版时要充分考虑丝网印刷的特殊效果。
三、作用不同
1、镭射logo:不仅可以防潮、防气味扩散还可以增加包装的美观性。
2、电蚀logo:提高耐磨性、导电性、反光性、抗腐蚀性(硫酸铜等)及增进美观等作用。
3、丝印logo:应用的范围是非常广泛的。除水和空气以外(包括其它液体和气体),任何一种物体都可以作为承印物。
(1)两金属在真空中火花放电时,当电压(电位差)超过一定时即产生"击穿",电子由"-"极逸出飞向"+"极,由于真空中没有物质阻挡电子的运动,所以没有正离子形成,没有发热的放电"通道"的概念,示波器、显像管中电子流的运动与此类似。基本上没有"电蚀产物"成生。(2)两金属在空气中放电的例子是电火花表面强化、涂覆。电焊、等离子切割、等离子焊等,也是在空气中放电,利用电子流在空气中撞击气体原子形成放电通道,在通道中和工件表面产生大量的热能用于强化、涂覆、切割和焊接。(3)在纯水、蒸馏水或去离子水中,两金属间电火花放电与在煤油中类似,只是水分子、原子受电子、正离子撞击发热气化,最后分解为氧原子和氢原子(分子),而不像煤油中会分解出碳原子(碳黑微粒)和氢气等。
中走丝电火花线切割机(Medium-speed Wire cut Electrical Discharge Machining简写MS-WEDM),属往复高速走丝电火花线切割机床范畴,是在高速往复走丝电火花线切割机上实现多次切割功能,被俗称为“中走丝线切割”。中走丝技术在这里指出,所谓“中走丝”并非指走丝速度介于高速与低速之间,而是复合走丝线切割机床,即走丝原理是在粗加工时采用高速(8-12m/s)走丝,精加工时采用低速(1-3m/s)走丝,这样工作相对平稳、抖动小,并通过多次切割减少材料变形及钼丝损耗带来的误差,使加工质量也相对提高,加工质量可介于高速走丝机与低速走丝机之间。因而可以说,用户所说的“中走丝”,实际上是往复走丝电火花线切割机借鉴了一些低速走丝机的加工工艺技术,并实现了无条纹切割和多次切割。中走丝技术在实践中得出,在多次切割中第一次切割任务主要是高速稳定切割,可选用高峰值电流,较长脉宽的规准进行大电流切割,以获得较高的切割速度。第二次切割的任务是精修,保证加工尺寸精度 。可选用中等规准,使第二次切割后的粗糙度Ra在14~17μm之间。 为了达到精修的目的,通常采用低速走丝方式,走丝速度为1~3m/s,并对跟踪进给速度限止在一定范围内,以消除往返切割条纹,并获得所需的加工尺寸精度。 第三次、第四次或更多次切割(目前中走丝控制软件最多可以实现七次切割)的任务是抛磨修光 ,可用最小脉宽(目前最小可以分频到1μs)进行修光,而峰值电流随加工表面质量要求而异,实际上精修过程是一种电火花磨削,加工量甚微,不会改变工件的尺寸大小。走丝方式则像第二次切割那样采用低速走丝限速进给即可。中走丝技术在加工过程中,多次切割还需注意变形处理,因为工件在线切割加工时,随着原有内应力的作用及火花放电所产生的加工热应力的影响,将产生不定向、无规则的变形,使后面的切割吃刀量厚薄不均,影响了加工质量和加工精度。因此需根据不同材料预留不同加工余量,以使工件充分释放内应力及完全扭转变形,在后面多次切割中能够有足够余量进行精割加工,这样可使工件最后尺寸得到保证。 在日常生活中,我们常常听说中走丝、慢走丝、快走丝,对于业内人来说,可能是非常的简单,但是对于业外人来说,不知道三者之间到底应如何区分?本文简单介绍一下,三者的区别。如要更细了解请查找更多的相关的资料。
首先,中走丝、慢走丝、快走丝都是指的电火花线切割机床。电火花线切割机(Wire cut Electrical Discharge Machining简称WEDM),属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。电火花线切割机按走丝速度可分为高速往复走丝电火花线切割机(Reciprocating type High Speed Wire cut Electrical Discharge Machining俗称“快走丝”)、低速单向走丝电火花线切割机(Low Speed one-way walk Wire cut Electrical Discharge Machining俗称“慢走丝”)和立式自旋转电火花线切割机(Vertical Wire Electrical Discharge Machining machine tool With Rotation Wire)三类。又可按工作台形式分成单立柱十字工作台型和双立柱型(俗称龙门型)。
快走丝是指钼丝来回走动,这样比较节约钼丝,但是精度低,一般国产线切割机使用。
中走丝也是电火花线切割机床的一种,工作原理是利用连续移动的钼丝(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属、切割成型。其走丝速度及工件质量介于快走丝和慢走丝之间所以叫做中走丝,准确的说:中走丝是快走丝的升级产品,所以也可以叫:能多次切割的快走丝,所以它的加工速度接近于慢走丝,而加工的质量也趋于慢走丝。走丝速度在1~12m/s之间,可以根据需要进行调节。
慢走丝线切割DK7632慢走丝是电火花线切割的一种英文简写是(WEDM-LS)是利用连续移动的细金属丝(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属、切割成型。它主要用于加工各种形状复杂和精密细小的工件,根据电极丝的运行速度不同,电火花线切割机床通常分为两类:一类是慢走丝(也叫低速走丝电火花线切割机床)电极丝作低速单向运动,一般走丝速度低于02m/s,精度达0001mm级,表面质量也接近磨削水平。电极丝放电后不再使用,工作平稳、均匀、抖动小、加工质量较好。而且采用先进的电源技术,实现了高速加工,最大生产率可达220mm2/min。
1、中走丝线切割的特点
高速走丝与低速走丝(或快走丝和慢走丝)的提法,是用电极丝的走丝速度来区分的。而中走丝,虽然其走丝速度介于二者之间,但它描述的重点,并不是走丝速度,仅仅是参照了以前的名词,形象化地把这种——在高速走丝基础上发展起来的,加工效果向低速走丝靠拢的——新型机床,称为了中走丝;且又与俗称(以前的名词)快走丝、慢走丝相对应。
事实上,在现行有效的“特种加工行业”标准中,已经不以走丝速度来划分线切割机床类型,而是分为了“单向走丝型”和“往复走丝型”两类。例如,GB/T 7925-2005 电火花线切割机(往复走丝型) 参数。
这样,快走丝和中走丝,都属于往复走丝型线切割。而在平常的叙述中,仍不妨以快走丝和中走丝相区别。现在,来看中走丝线切割的特点。
1)可实现多次切割 中走丝与快走丝的显著区别,是可实现多次切割。多次切割的目的,是为了提高表面质量,满足加工工件的需要,从而扩大适应范围。例如,中走丝机床,在三次切割后,表面粗糙度达Ra≤12μm
多次切割对机床的机械精度、重复定位精度、运丝系统的稳定性、脉冲电源的性能、工作液的电导率以及多次切割的工艺数据库等的要求远远高于普通HSWEDM机床的要求。
(2)脉冲电源有所突破 为实现多次切割而又保证加工效率,必须提高在粗加工时的切割速度,这需要脉冲电源的密切配合。
为此,根据电力电子技术的发展,将脉冲电源进行了改进,并取消了限流电阻(限流电阻。这样一来,既提高了脉冲电源性能,又节约了能源。
当前,中走丝脉冲电源的最大切割速度接近200mm2/min,多次切割(例如三次)的平均速度,可达60-80mm2/min左右;而且,获得了极低电极丝损耗的效果。因此,有的被号称为智能化高频脉冲电源。
(3)控制系统 中走丝线切割多采用工业PC机构成一体化的编程控制系统,结合工艺数据库,系统能提供最佳加工条件,以达到高速加工、保证质量、简化操作的目的。
例如,用户在输入加工条件(材料、厚度等)、工艺参数(表面粗糙度等)后,系统就可给出合适的电规准(脉冲宽度、脉冲间隔、空载电压、加工电压、加工电流等),以及伺服进给速度、电极丝运丝速度等进行各次加工,并在加工中作出适当反应。
所以,控制系统需要脉冲电源、机床电气系统的密切配合,也有把这类型机床称为“智能化多速走丝线切割机床”的。
(4)机床电路 为满足各次切割的不同要求,电极丝运丝速度要求可进行调节,采用交流变频调速是常用的方式。
如此一来,可采用电子逻辑电路代替继电器控制电路,同时也方便了与控制系统接口,便于对运丝速度的控制。
采用变频调速后,也减缓了运丝电机的换向冲击,有利于保持电极丝的稳定。
(5)机床机械精度的提高及其他 为保证多次切割的效果,机床必须有较高的重复定位精度,这对床身、导轨等都有一定的要求。
采取的措施包括:设计合适的结构、选用合适的材料、使用直线导轨,以及进给系统采用无间隙齿轮副或电机直拖消间隙等,以此来保持机床的精度和耐用性。
在电极丝的稳定性方面,也同样采取了各种各样的措施。
另外,开发了新的工作液,新的过滤系统,以满足加工和环保要求。
2、快走丝线切割与中走丝线切割
把传统的“快走丝线切割”称为了“普通高速走丝线切割”,以区别于以后出现的新型机床——就目前来说,“中走丝”就是这样的新型机床。
(1)快走丝(普通高速走丝线切割机床)仍会有较大的拥有量
中走丝是近年发展起来的新型机种;之前,快走丝已经历了一个年产销数万台的鼎盛时期,这大量的机床仍将继续使用。并且,由于快走丝技术成熟,价格低廉,以及高效大厚度加工的优势,所以仍将占有相当大的市场份额。
即使计算到使用日久而退出的机床,和采用中走丝技术改造的少量机床,快走丝的绝对数量,仍将是一个可观的数字。考虑到机床较长的使用寿命,所以在相当长的时间内,快走丝数量仍占有绝对优势。
(2)快走丝与中走丝将长期共存
目前,中走丝线切割有较强的推广力度,也有较好的发展势头。它“在加工一些厚度不大的工件方面已有实用的价值,但若加工的工件厚度较大,实现可靠加工就较为困难。
由于中走丝秉承了快走丝性价比高的优点,又有加工质量好的优势,虽然加工效果越好的机床价格越高,但仍然会被一些有需要的用户接受。结合上面的论述,可知快走丝与中走丝将长期共存。
并且,随着中走丝技术的完善,在电气控制方面,部分快走丝将有向中走丝融合的趋势,保持性价比优势的快走丝机床或者大众化机床,将借鉴中走丝的可用技术,从而提高性能。 中走丝线切割机床的工作环境的一些相关注意的事项
1选择没有粉尘的场所,避免留众多的通道在线切割的旁边;
(1) 线切割放电机器之本身特性,其空气中有灰尘存在,将会使机器的丝杆受到严重磨损,从而影响使用寿命;
(2) 线切割放电机器属于计算机控制,计算机所使用的磁盘对空气中灰尘的要求相当严格的,当磁盘内有灰尘进入时,磁盘就会被损坏,同时也损坏硬盘;
(3) 线切割放电机本身发出大量热,所以电器柜内需要经常换气,若空气中灰尘太多,则会在换气过程中附积到各个电器组件上,造成电器组件散热不良,从而导致电路板被烧坏掉。因此,机台防尘网要经常清洁。
2选择能承受机床重量的场所;
3选择没有振动和冲击传入的场所,线切割放电机床是高精度加工设备,如果所放置的地方有振动和冲击,将会对机台造成严重的损伤,从而严重影响其加工精度,缩短其使用寿命,甚至导致机器报废。
4满足线切割机床所要求的空间尺寸;
5选择温度变化小的场所,避免阳光通过窗户和顶窗玻璃直射及靠近热流的地方
(1)高精密零件加工之产品需要在恒定的温度下进行,一般为室温20C;
(2)由于线切割放电机器本身工作时产生相当大的热量,如果温度变化太大则会对机器使用寿命造成严重影响。
6选择屏蔽屋:因线切割放电加工过程属于电弧放电过程,在电弧放电过程中会产生强烈的电磁波,从而对人体健康造成伤害,同时会影响到周围的环境
7选择通风条件好,宽敞的厂房,以便操作者和机床能在最好的环境下工作。
线切割的其它注意事项:
1 钼丝与工件的被加工表面之间必须保持一定间隙,间隙的宽度由工作电压 、加工量等加工条件而定。
2 电火花线切割机床加工时,必须在有一定绝缘性能的液体介质中进行,如煤油、皂化油、去离子水等,要求较高绝缘性是为了利于产生脉冲性的火花放电,液体介质还有排除间隙内电蚀产物和冷却电极作用。钼丝和工件被加工表面之间保持一定间隙,如果间隙过大,两极间电压不能击穿极间介质,则不能产生电火花放电;如果间隙过小,则容易形成短路连接,也不能产生电火花放电。
3 必须采用脉冲电源,即火花放电必须是脉冲性、间歇性,上图中ti为脉冲宽度、to为脉冲间隔、tp为脉冲周期。在脉冲间隔 内,使间隙介质消除电离,使下一个脉冲能在两极间击穿放电。 中走丝线切割工作液的作用与注意事项:
电火花线切割稳定切割的前提首先必须保证在切割过程中不断丝。而断丝机率主要随着放电能量和切割厚度的增加而加大,即与电极丝在放电通道内所受到的离子轰击、冷却状态及停留时间密切相关。切割的效率和表面粗糙度也与极间冷却与消电离并恢复绝缘状态有关。当采用含有机械油5%左右的乳化液作为工作介质时,切割完毕后观察切割工件表面有两个现象:首先切割完毕的试件是粘附在基体上的,一般需要用力甚至敲击才可以使其与基体脱离;其次切割完毕的试件表面覆盖着胶粘的甚至是粉末状的蚀除产物,需用煤油才能清洗干净。这主要是伴随着放电通道内10000°C以上的高温,工作介质将分解生成大量的高分子化合物并与金属蚀除产物反应生成胶体状或颗粒状物质。这些物质将粘附在切缝内,并主要在切缝出口部位堆积,严重影响电蚀产物的排除,并使新鲜的工作介质进入切缝十分困难。由于两极间不能保证存在不断更新的工作介质,这样将直接影响正常放电的延续甚至是在混有大量胶体物质的间隙内进行的放电甚至产生电弧放电,从而使工件和电极丝表面得不到及时冷却,绝缘状态不正常,造成正常放电比例降低,切割速度降低,工件表面烧伤,换向条纹严重并使得加工质量恶化,同时损伤电极丝,严重时引起烧丝。因此选用乳化液作为工作介质对于极间通道内冷却状态的改善、消电离并恢复绝缘状态均有较大的影响,并且工件愈高,运丝速度愈慢,电极丝在加工区域停留时间将愈长,断丝的机率自然就会增加。而乳化液在放电通道内分解成胶体或颗粒状物质是一种必然的现象,所以使用乳化液作为工作介质必然大大限制切割工艺指标的提高。极间冷却状态的恶化其最直接的结果将导致WEDM-HS必须以十分保守的放电能量换取不断丝的加工情况。
纯净水基工作液的优缺点:
中走丝线切割机床由于纯水基工作液导电率较高,所以在切割过程中具有较强的电解作用,虽然切割出的工件表面十分均匀,但工件表面因为电解作用将导致色泽较暗,这种现象在多次切割时体现的更加明显;
1纯水基工作液因为没有油性成分,所以一旦挥发后其切割的蚀除产物就粘接在工作台上和导轮周围,清理困难,严重时甚至会将导轮抱死,一旦运丝后电极丝与导轮将产生滑动摩擦导致导轮精度丧失而报废;
2水基工作液因为具有较强的碱性,长期使用会使得机床油漆面起泡和褪色;
3水基工作液必须严格控制稀释比例,否则极易锈蚀机床和工件;
4水基工作液挥发性较强,同时由于组分的问题,一般在切割过程中都会散发出一些异味。
目前市面上有线切割专用乳化液、固体乳化皂、复合工作液等,选择好的工作液对加工的质量起到相当大的做用。 1.机床主体:床身、丝架、走丝机构、X—Y数控工作台
2.工作液系统
3 高频电源:产生高频矩形脉冲,脉冲信号的幅值、脉冲宽度可以根据不同工作状况调节。
4 数控和伺服系统 1.广泛应用于加工各种冲模。
2.可以加工微细异形孔、窄缝和复杂形状的工件
3.加工样板和成型刀具。
4.加工粉末冶金模、镶拼型腔模、拉丝模、波纹板成型模
5.加工硬质材料、切割薄片,切割贵重金属材料。
6.加工凸轮,特殊的齿轮。
7.适合于小批量、多品种零件的加工,减少模具制作费用,缩短生产周期
轴承的失效形态和其对应的失效原因如下:
一、疲劳剥落
疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。
疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.
轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有:
1、次表面起源型
次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。
2、表面起源型
表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。
3、工程模型
工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。
疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下:
A、制造因素
1、产品结构设计的影响
产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。
2、材料品质的影响
轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。
就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。
在材料品质中,另一个主要影响轴承疲劳性能的因素是材料的纯洁度,其具体表现为钢中含氧量的多少及夹杂物的数量多少、大小和分布上。
3、热处理质量的影响
轴承热处理包括正火、退火、渗碳、淬火、回火、附加回火等。其质量直接关系到后续的加工质量及产品的使用性能。
4、加工质量的影响
首先是钢材金属流线的影响。钢材在轧制或锻造过程中,其晶粒沿主变形方向被拉长,形成了所谓的钢材流线(纤维)组织。试验表明,该流线方向平行于套圈工作表面的与垂直的相比,其疲劳寿命可相差2。5倍。其次是磨削变质层。磨削变质层对轴承的疲劳寿命与磨损寿命有很大的影响。变质层的产生使材料表面层的组织结构和应力分布发生变化,导致表面层的硬度下降、烧伤,甚至微裂纹,从而对轴承疲劳寿命产生影响。
受冷热加工条件及质量控制的影响,产品在加工过程中会出现质量不稳定或加工误差,如热加工的材料淬、回火组织达不到工艺要求、硬度不均匀和降低,冷加工的几何精度超差、工作表面的烧伤、机械伤、锈蚀、清洁底低等,会造成轴承零件接触不良、应力集中或承载能力下降,从而对轴承疲劳寿命产生不同程度的影响。
B、使用因素
使用因素主要包括轴承选型、安装、配合、润滑、密封、维护等。
不正确的安装方法很容易造成成轴承损坏或零件局部受力产生应力集中,引起疲劳。过大的配合过盈量容易造成内圈滚道面张力增加及零件抗疲劳能力下降,甚至出现断裂。
润滑不良会引起不正常的摩擦磨损,并产生大量的热量,影响材料组织和润滑剂性能。如果润滑不当,即便选用再好的材料制造,加工精度再高,也起不到提高轴承寿命的效果。
密封不良容易使杂质进入轴承内部,既影响零件之间的正常接触形成疲劳源,又影响润滑或污染润滑剂。
根据疲劳产生的机理和主要影响因素,可以有针对性地提出预防措施。如对表面起源损伤引起的疲劳,可以通过对零件表面进行表面强化处理,对次表面起源型疲劳可以通过改善材料品质等措施。而提高零件加工质量尤其是零件表面质量、提高使用质量、控制杂质流入轴承内部、保证润滑质量等措施对预防和延缓疲劳都有十分重要的意义。
二、表面塑性变形
表面塑性变形主要是指零件表面由于压力作用形成的机械损伤。在接触表面上,当滑动速度比滚动速度小得多的时候会产生表面塑性变形。
表面塑性变形分为一般表面塑性变形和局部表面塑性变形两类。
A、一般表面塑性变形
是由于粗糙表面互相滚动和滑动,同时,使粗糙表面不断产生塑性碰撞所造成,其结果形成了冷轧表面,从外观上看,这种冷轧表面已被辗光,但是,如果辗光现象比较严重,在冷轧表面上容易形成大量浅裂纹,浅裂纹进一步发展可能(在粗糙表面区域区)导致显微剥落,但这种剥落很浅,只有几个微米,它能够覆盖很宽的接触表面
根据弹性流体动压润滑理论,一般表面塑性变形产生的原因是由于两个粗糙表面直接接触,其间没有形成承载的弹性流体动压润滑膜因此,当油膜润滑参数小于一定值时,将产生的一般表面塑性变形一般油膜润滑参数值越小表面塑性变形越严重
B、局部表面塑性变形
局部表面塑性变形是发生在摩擦表面的原有缺陷附近。最常见的原有缺陷,如压坑(痕)、磕碰伤、擦伤、划伤等。
1、压坑(痕)
压坑(痕)是由于在压力作用下硬质固体物侵入零件表面产生的凹坑(痕)现象。
压坑(痕)的形态特征是:形状和大小不一,有一定深度,压坑(痕)边缘有轻微凸起,边缘较光滑。
硬质固体特的来源是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入。
压坑(痕)产生的部位主要在零件的工作表面上。
预防压坑(痕)的措施主要有:提高零件的加工精度和轴承的清洁度、改善润滑、提高密封质量等。
2、磕碰伤
磕碰伤是由于两个硬质特体相互撞击形成的凹坑现象。
磕碰伤的形态特征视两物体形状和相互撞击力的不同其形状和大小不一,但有一定深度,在其边缘处常有突起。
磕碰伤主要是操作不当引起的。产生部位可以在零件的所有表面上。
预防磕碰伤的措施主要有:提高操作者的责任心、规范操作、改进产品容器的结构和增加零件的保护措施等。
3、擦伤
擦伤是两个相互接触的运动零件,在较大压力作用下因滑动摩擦产生的金属迁移现象。严重时可能伴随烧伤的出现。
擦伤的形状不确定,有一定长底和宽度,深度一般较浅,并沿滑动(或运动)方向由深而浅。
擦伤可以在产品制造过程中产生也可以在使用过程中产生。
轴承制造成过程中的擦伤预防措施与磕碰伤的预防措施相同。使用中的擦伤预防措施主要是从防止“打滑”方面考虑,改进产品内部结构、提高过盈配合量、调整游隙、改善润滑、保证良好接触状态等。
4、划(拉)伤
划(拉)伤是指硬质和尖锐物体在压力作用下侵入零件表面并产生相对移动后形成的痕迹。
划伤一般呈线型状,有一定深度,宽度比擦伤窄,划伤的伤痕方向是任意的,长度不定。产生部位主要在零件的工作表面和配合表面上。而拉伤只发生在轴承内径(过盈)配合面上,伤痕方向一般与轴线平行,有一定长度、宽度和深度,并成组出现。
划伤可以在轴承制造过程中产生也可在使用中产生。而拉伤只发生在轴承安装拆卸过程中。
预防轴承制造过程中的划伤与预防磕碰伤的措施相同。预防使用中划伤与预防压坑(痕)的措施基本相同。
预防拉伤的措施是严格安装拆卸规程、保证配合面的清洁、安装时在配合面上适当润滑等。
综上所述,预防表面塑性变形的措施是要正确选用轴承、增强材料的耐磨性,保证润滑的有效性、注意安装方法、提高轴承密封装置的密封性等。
三、磨损
在力的作用下,两个相互接触的金属表面相对运动产生摩擦,形成摩擦副。磨擦引起金属消耗或产生残余变形,使金属表面的形状、尺寸、组织或性能发生改变的现象称为磨损。
磨损过程包含有两物体的相互作用、黏着、擦伤、塑性变形、化学反应等几个阶段。其中物体相互作用的程度对磨损的产生和发展起着重要的作用。
磨损的基本形工有:疲劳磨损、黏着磨损、磨料(粒)磨损、微动磨损和腐蚀磨损等。
产生磨损的主要原因:
A、异物通过了密封不良的装置(或密封圈)进入了轴承内部。
B、润滑不当。如润滑油中的杂质未过滤干净、润滑方式不良、润滑剂选用不当、润滑剂变质等。
C、零件接触面上的材料颗粒脱离,
D、锈蚀。如,由于轴承使用温度变化产生的冷凝水、润滑剂中添加剂的腐蚀性特质等原因形成的锈蚀。
实际中多数磨损属于综合性磨损,预防对策应根据磨损的形式和机理分别采取措施。
对于微动磨损,可以采用小游隙或过盈配合来减少使用过程中的微动磨损;可在套圈与滚动体之间采用稀润滑剂润滑或分别包装来减少运输过程的微动磨损;另外,轴承应放在无振动环境下保管,或将轴承内外圈隔离存放可以防止保管过程中产生的微动磨损。
对于黏着磨损可以采取提高加工精度、增强润滑效果等措施来解决。
对于磨料(粒)磨损,可以采用表面强化处理、表面润滑处理(如渗硫、磷化、表面软金属膜涂层等)、改善轴承密封结构、提高零件加工精度、保证润滑油过滤质量、减少制造和使用过程中对表面的损伤等方法来解决。
对于腐蚀磨损,应减少轴承使用环境中腐蚀物质的侵入、对零件表面进行耐腐蚀处理或采用耐腐蚀材料制造产品等手段来解决。另外,还可以从产品结构设计和制造的角度进行改进,如提高零件的加工精度、减少磨削加工中产生的变质层、保证弹性流体动压润滑膜等实现预防磨损的目的。
四、腐蚀
金属与其所处环境中的物质发生化学反应或电化学反应变化所引起的消耗称为腐蚀。
金属腐蚀的形式多种多样,就金属与周围介质作用的性质来分可以分为化学腐蚀和电化学腐蚀两类
化学腐蚀是由于金属与周围介质之间的纯化学作用引起的。其过程中没有电流产生,但有腐蚀物质产生。这种物质一般都覆盖在金属表面上形成一层疏松膜.化学反应形成的腐蚀机理比较简单,主要是物体之间通过接触产生了化学反应,如金属在大气中与水产生的化学反应形成的腐蚀(又称为锈蚀)
电化学腐蚀是由于金属与周围介质之间产生电化学作用引起的。其基本特点是在腐蚀的同时又有电流产生。电化学反应的腐蚀机理主要是微电池效应。
就滚动轴承而言,产生腐蚀的主要原因有:
A、轴承内部或润滑剂中含有水、碱、酸等腐蚀物质
B、轴承在使用中的热量没有及时释放,冷却后形成水分
C、密封装置失效
D、轴承使用环境湿度大
E、清洗、组装、存放不当
腐蚀产生部位:零件各表面都会有。按程度有腐蚀斑点或腐蚀坑(洞),斑点和蚀坑一般呈零星或密集分布,形状不规则,深度不定,颜色有浅灰色、红褐色、灰褐色、黑色。
对于金属材料来说,消除腐蚀是比较困难的,但可以减缓腐蚀的发生,防止轴承与腐蚀物质接触,可以通过合金化,表面改性等方法提高耐腐蚀能力,使得金属表面形成一层稳定致密与基体结合牢固的钝化膜。
六、蠕动
受旋转载荷的轴承套圈,如果选用间隙配合,在配合表面上会发生圆周方向的相对运动,使配合面上产生磨擦、磨损、发热、变形,造成轴承不正常损坏。这种配合面周向的微小滑动称为蠕动或爬行。
蠕动形成的机理是当内圈与轴配合过盈量不足时,在内圈与轴之间的配合面上因受力产生弹性变形而出现微小的间隙,造成内圈与轴旋转时在圆周方向上的不同步、打滑,严重时在压力作用下发生金属滑移。在外圈与壳体也同样会出理类似的情况。
蠕动形貌特征在一些方面具有腐蚀磨损和微动磨损的某些特征。蠕变在形成过程中也有一些非常细小的磨损颗粒脱落并立即局部氧化,生成一种类似铁锈的腐蚀物。其区别主要根据它们的位置和分布来判断,如果零件没有受到腐蚀又出现了褐色锈斑,锈斑的周围常常围绕着一圈碾光区,出现的部位又在轴承的配合表面上,那么可能就是蠕动。发生蠕动的配合面上,或出现镜面状的光亮色,或暗淡色,或咬合状,蠕动部位与零件原表面有明显区别。
在轴承的端面由于轴向压紧力不足。或悬臂轴频繁挠曲,运转一定时间后也会出现蠕动的特征。
产生蠕动的主要原因是内,外圈与轴或轴承座的配合过盈量不足,或载荷方向发生了变化。
预防的措施:采用过盈配合并适当提高过盈量,在采用间隙配合的场合的场合可用黏结剂将两个配合面固定或沿轴(或轴承座)的轴向方向将轴承紧固。
六 烧伤
轴承零件在使用中受到异常高温的影响,又得不到及时冷却,使零件表面组织产生高温回火或二次淬火的现象称为烧伤。
烧伤产生的主要原因是润滑不良、预载荷过大、游隙选择不当、轴承配置不当、滚道表面接触不良、应力过大等因素所致。如:
A、在轴向游动轴承中,如果外圈配合的过紧,不能在外壳孔中移动;
B、轴承工作中运转温度升高,轴的热膨胀引起很大的轴向力,而轴承又无法轴向移动时;
C、由于润滑不充分,或润滑剂选用不合理、质量问题、老化和变质等;
D、内外圈运转温度差大,加上游隙选择不当,外圈膨胀小内圈大呈过盈导致轴承温度急剧升高;
E、轴承承受的载荷过大和载荷分布均匀,形成应力集中;
F、零件表面加工粗糙,造成接触不良或油膜形成困难。
烧伤的形貌特征可以根据零件表面的颜色不同来判断。轴承在使用中由于润滑剂、温度、腐蚀等原因。零件表面会发生变化,颜色主要有淡**、**、棕红色、紫蓝色及蓝黑色等,其中淡**、**、棕红色属于变色,若出现紫蓝色或蓝黑色的为烧伤。烧伤容易造成零件表面硬度下降或出现微裂纹。
烧伤产生的部位主要发生在零件的各接触表面上,如圆锥滚子轴承的挡边工作面、滚子端面、应力集中的滚表面等。
烧伤的预防可根据烧伤产生的原因有针对性地采取措施。如正确选用轴承结构和配置、避免轴了砂承受过大的载荷、安装时采用正确的安装方式防止应力集中、保证润滑效果等。
七、 电蚀
电蚀是由电流放电引起,致使轴承零件表面出现电击的伤痕,此种损伤称为电蚀。在两零件接触面间一般存在一层油膜,该油膜一定有的绝缘作用,当有电流通过轴承内部时,在两面三刀零件接触表面形成电压差,当电压差高到足以击穿绝缘层时就会在两零件接触表面处产生火区放电,击穿油膜放电,产生高温,造成局部表面的熔融,形成弧凹状或沟蚀。受到电蚀的零件,其金属表面被局部加热和熔化,在放大镜下观察损伤区域一般呈现斑点、凹坑、密集的小坑,有金属熔融现象,电蚀坑呈现火山喷口状。电蚀会使零件的材料硬度下降,并加快磨损发生速度,也会诱发疲劳剥落。
预防电蚀的措施是在焊接或其他带电体与轴承接触时加强轴承的绝缘或接地保护,防止电荷的聚集并形成高的电位差,避免放电现象产生。防止电流与轴承接触。
八、裂纹和缺损
当轴承零件所承受的应力超出材料的断裂极限应力时,其内部或表面便发生断裂和局部断裂,这种使材料出现不连续或断裂的现象称为裂纹。
在材料表面或表层下有一种貌似毛发的细微裂纹称为发纹。当发纹扩展到一定程度,使得部分材料完全脱离零件基体的现象称为断裂。
裂纹一般呈线状,方向不定,有一定长度和深(宽)度,有尖锐的根部和边缘。裂纹有内部裂纹和表面裂纹之分,也有肉眼可见和不可见两种形式,对于肉眼不可见裂纹需要采用无损检测的方法进行观察。发纹一般呈细线状,方向沿钢材轧制方向断续分布,有一定长度和深度,有时单条有时数条出现。
裂纹产生的原因较为复杂,影响因素很多,如原材料、锻造、冲压折叠、热处理、磨削、局部过大的应力等。发纹形成的原因是钢材在冶炼过程中产生的气泡或夹杂,经轧制变形后存在于材料表层。对于肉眼不可见裂纹需要采用无损检测的方法进行观察。
裂纹的预防措施主要有,在制造方面应控制原材料缺陷如非金属夹杂、表面夹渣、折叠、显微孔隙、缩孔、气泡等。控制加工应力如热处理淬火时产生的内应力(热应力和组织应力)、磨削应力、冲压应力等。在使用方面注意轴承安装过程中的非正常敲(撞)击以及安装不良造成的局部应力过大等。另外,还要保证润滑,增强密封效果,控制外部杂质流入,避免轴承与腐蚀性物质接触等。
九、保持架损坏
当滚动体进入或离开承载区域时,保持架将受到带有一定冲击性质的拉(压)应力作用,尤其是滚子轴承的滚子产生倾斜时所受到的应力会更大。在这种应力的反复作用下,保持架的兜孔、过梁、铆钉会出现变形、磨损、疲劳,甚至断裂现象。另外,不正确的安装方式也会损坏保持架。保持架相对套圈的强度一般较弱(尤其是冲压保持架),如果安装不得当,将安装力直接施加在保持架上,很容易造成保持架变形。冲压保持架制造过程中产生的应力过大也是造成保持架损坏的原因之一。
防止保持架损坏的措施可以从设计、制造、安装方面考虑。保持架在运转中受到的拉(压)应力是无法避免的。但提高保持架的强度可通过适当增加保持架过梁(铆钉)强度来解决。滚子产生倾斜可以通过提高制造和安装质量来解决。改善润滑条件有助于减少磨损。对冲压保持架制造过程中产生的应力可采用振动光饰等方法支除或减少应力。
十、尺寸变化
轴承运转一定时间以后,会出现游隙减小或增大的现象。通过对零件尺寸检测可以发现轴承内、外圈或滚动体直径方向的尺寸发生了变化(增大或减小),影响轴承的正常旋转精度。若没有了游隙,会出现摩擦磨损加剧、工作温度上升、甚至“卡死”等现象。若游隙变大,会出现振动或噪声增大、旋转精度降低、应力集中等情况。轴承内径增大还很可能出现“甩圈”现象。
轴承零件在热处理过程中,保留了一定数量的残佘奥氏体,而奥氏体是一种不稳定相,随着时间或温度的变化,奥氏体将逐步转变为较稳定的马氏体组织,由于马氏体组织的体积大于奥氏体组织,因此,在转变过程中零件的体积将发生涨大。而马氏体组织自身也会产生分解,马氏体分解的结果会出现尺寸收缩的现象。轴承工作温度高对奥氏体的转变和马氏体的分解有促进作用。还有一种情况,零件在内应力释放过程中也会引起尺寸的改变。
从预防或控制零件尺寸稳定性的角度考虑,可以在轴承零件热处理时对不稳定的残余奥氏体组织进行稳定化处理。另外,在使用中应保证轴承的使用温度低于轴承允许的工作温度,以防止尺寸出现较大的变化。
十一、使用不当引起的损坏
轴承使用不当引起的损坏在轴承失效中占有很大的比例。轴承使用不当涉及轴承选型、轴承配置、轴承支承结构、配合、安装、润滑、密封、维护保养等诸多方面。轴承失效与使用不当密不可分。
十二、其他损伤
A、变色
变色是由于轴承在运转过程中因发热引起的表面颜色变化。另外,在温度作用下润滑剂中的部分化学物质、磨损的金属粉末等杂质会黏附在零件表面上也会引起轴承零件颜色变化,这种变色又称污斑。表面颜色一般呈淡**、**、茶色、棕红色、紫蓝色及蓝黑色等,发热引起的变色一般没有深度。对于使用中的轴承若出现深度变色如紫蓝色或蓝黑色的则有可能形成了烧伤。零件腐蚀也会引起变色,但这类变色有一定深度。
轴承零件在运转过程中,因摩擦会产生大量的热,若润滑不充分或散热条件差,热量得不到及时的冷却或扩散,热量的聚积使轴承温度很快升高,温度升高会使附着在轴承零件表面的油膜产生氧化现象,形成一种浅褐色的氧化制,沉积附着在轴承的表面上。但这种变色并不影响轴承的使用,所以允许存生。当轴承因安装不当(如安装倾斜)或润滑不良等原因使轴承处于一种极不正常的工作状态,引起温度的急速上升,此时轴承的局部温度有可能超过轴承零件的回火温度,甚至更高,并产生严重的变色如蓝黑色或紫蓝色,形成烧伤现象,这种情况的变色轴承就不能再继续使用了。
黄铜
黄铜是由铜和锌所组成的合金。如果只是由铜、锌组成的黄铜就叫作普通黄铜。如果是由二种以上的元素组成的多种合金就称为特殊黄铜。如由铅、锡、锰、镍、铁、硅组成的铜合金。黄铜有较强的耐磨性能。特殊黄铜又叫特种黄铜,它强度高、硬度大、耐化学腐蚀性强。还有切削加工的机械性能也较
突出。由黄铜所拉成的无缝铜管,质软、耐磨性能强。黄铜无缝管可用于热交换器和冷凝器、低温管路、海底运输管。制造板料、条材、棒材、管材,铸造零件等。含铜在62%~68%,塑性强,制造耐压设备等。
根据黄铜中所含合金元素种类的不同,黄铜分为普通黄铜和特殊黄铜两种。压力加工用的黄铜称为变形黄铜
铅黄铜
铅黄铜(俗称易切削黄铜):铅实际不溶于黄铜内,呈游离质点状态分布在晶界上。铅黄铜按其组织有α和(α+β)两种。α铅黄铜由于铅的有害作用较大,高温塑性很低,故只能进行冷变形或热挤压。(α+β)铅黄铜在高温下具有较好的塑性,可进行锻造。
铍青铜
铍青铜是一种含铍铜基合金(Be02~275%wt%),在所有的铍合金中是用途最广的一种, 其用量在当今世界已超过铍消费总量的70%。铍青铜是沉淀硬化型合金,固溶时效处理后具有很高强度、硬度、弹性极限和疲劳极限,弹性滞后小,并具有耐蚀(铍青铜合金在海水中耐蚀速度:(11-14)×10-2mm/年。腐蚀深度:(109-138)×10-3mm/年。)腐蚀后,铍青铜合金强度、延伸率均无变化,故在还水中可保持40年以上,铍铜合金是海底电缆中继器构造体不可替代的材料。在硫酸介质中:铍青铜在小于80%浓度的硫酸中(室温)年腐蚀深度为00012-01175mm,浓度大于80%则腐蚀稍加快。
、耐磨、 耐低温、无磁性、高的导电性、冲击无火花等特点。同时还具有较好的流动性和重现精细花纹的能力。由于铍铜合金的诸多优越性能,使其在制造业获得了广泛的应用。
红铜
红铜即纯铜,又名紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力加工,大量用于制造电线、电缆、电刷、电火花专用电蚀铜等要求导电性良好的产品。
即赤铜。由硫化物或氧化物铜矿石冶炼得来的纯铜,可用以铸钱及制作器物。 明 宋应星 《天工开物·铜》:“凡铜供世用,出山与出炉,止有赤铜。以炉甘石或倭铅参和,转色为黄铜;倭铅和写﹝泻﹞为铸铜。初质则一味红铜而已。” 郭沫若 《中国史稿》第一编第三章第二节:“他们冶炼的红铜成分很纯,除天然的微量(01-02%)杂质外,没有人工加入锡或铅使成合金。红铜的硬度虽较差,但直接经过捶打就能制成各种工具和装饰品。”
特性:高纯度,组织细密,含氧量极低。无气孔、沙眼、疏松,导电性能极佳,电蚀出的模具表面精度高,经热处理工艺,电极无方向性,适合精打,细打,具有良好的热电道性、加工性、延展性、防蚀性及耐候性等。
用途:可应用于电器、蒸溜建筑及化学工业,尤其端子印刷电器路板,电线遮蔽用铜带、气垫,汇流排端子。电磁开关、笔筒、屋根板等。
红铜的密度:896g/(cm)
红铜的比重:889g/(mm)
Cu≥99.95% O<003
电导率≥57ms/m
硬度≥85.2HV
铬锆铜
铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:025-065, Zr:008-020)硬 度(HRB78-83)导电率 43ms/m 软化温度 550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好。
铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本低,适合作为熔接焊机的电极有关管件,但对电镀工件表现一般。
应用:此产品广泛应用于汽车、摩托车、制桶(罐)等机械制造工业的焊接、导电嘴、开关触头、模具块、焊机辅助装置用各种物料。
规格:棒材、板材规格齐全,并可根据客户要求定制。
品质要求:
1电导率测量用涡流电导仪,测三点取平均值 ≥44MS/M
2硬度以洛氏硬度标准, 取三点取平均值 ≥78HRB
3软化温度实验,炉温 550℃ 保持两小时后,淬水冷却后与原始硬度比较不能降低15%以上
物理指标:硬度: >75HRB,导电率:>75%IACS,软化温度:550℃
●电阻焊电极:
铬锆铜通过热处理与冷加工相结合的方法来保证性能,它可以获得最佳的力学性能和物理性能,所以用来
做一般用途的电阻焊电极,主要作为点焊或缝焊低碳钢、镀层钢板的电极,也可以作为焊低碳钢时的电极
握杆、轴和衬垫材料,或作为焊低碳钢时的电极握杆、轴和衬垫材料,或作为凸焊机的大型模具、夹具、
●电火花电极:铬铜的导电导热性能好、硬度高、耐磨抗爆,用作电火花电极具有直立性好、打薄片不弯
曲、光洁度高等优点。
●模具母材:铬铜的导电导热性能、硬度、耐磨抗爆、价格比铍铜模具材料优越等特点,已经开始在模具
行业代替铍铜作为一般模具材料。比如鞋底模具、水暖模具、一般要求光洁高的塑胶模具、等
●接插件、导丝、等需要高强度导线的产品中。
铬锆铜:C18150
化学成份/% 铝 Al: 01-025, 镁 Mg: 01-025, 铬 Cr: 065, 锆 Zr:065, 铁 Fe:005, 硅 Si:005, 磷 P:001, 杂质总和:02 力学性能:抗拉强度为(δb/MPa):540-640, 硬度为HRB:78-88,HV:160-185 铬锆铜是一种耐磨铜,硬度特佳,具有优良的导电性及良好的抗回火能力,直立性好,薄片不易弯曲,是一种很好的航空材料加工电极。硬度》75(洛氏) 密度895g/cm3 电导率》43MS/m 软化温度》550℃, 一般用于制作工作温度350℃以下的电焊机电极电机整流子片以及其他各种在高温下工作的\要求有高的强 度硬度导电性和导性的零件,还可以双金属的形式用于刹车盘和圆盘 其主要牌号有;CuCrlZr, ASTM C18150 C18200
碳钢、低合金钢、不锈钢、铸铁、铜及铜合金、铝及铝合金 镍基合金焊条 钴基合金焊条 银焊条 合金焊条
焊材通常分为焊丝,焊条
以下是焊丝焊条的一些常用型号 CMC-SKD11-3 硬度 HRC56~58 10 12 16 24
焊补冷作钢、冲模、切模、刀具、成型模、工件硬面制作,具高硬度、耐磨性及高韧性之氩焊条。
CMC-SKD61-2 硬度 HRC52~57 10 12 16 20 24 32
焊补热锻模、热切模、热冲模、热加工成型模、热作工具、压铸钢模。
CMC-SKD61 硬度 HRC42~46 09 12 16 24
焊补铝铜压铸模、具良好耐热、耐磨、耐龟裂性。
CMC-M3-2 硬度 HRC61~63 12 16 20 24
补模拉刀,热作高硬度工具模具、热锻总模、热冲模、螺丝模,耐磨耗硬面、高速度钢。
CMC-MS-3 500度2H时效硬化硬度HRC48-50 12 16 20 24
特殊硬化高韧度合金,非常适用于铝重力压铸模、浇口,延长使用寿命3~5倍,可制作非常精密之模具、超镜面(浇口补焊,使用不易热疲劳裂痕)
CmC-12Cr 硬度 HRC52~57 10 12 16 24 32
专用于Cr12、Cr12MoV系列的模具修补氩焊丝。用于热处理前,可机械加工,可热处理,热处理时尺寸变化小、不易开裂。若须焊补超过3层,可用CMC-30N打底。用于热处理后之Cr12,小面积可不预热。熔金硬度足够,可机械加工。
CMC-S45H 硬度 HRC52~57 10 12 16 20 24 32
专用于S45C制作刀口之模具焊丝。鉴于模具产业对于成本之要求,交期渐紧的市场变化,所演进之模具刀口制作方式;在十分容易取得之S45C、A3、P20等模具钢局部,以焊接方式加强机械性能与硬度,主要用于:玻璃纤维模具、薄板五金冲压模…等刀口部位
CMC-Magic1 硬化后硬度 HRC50~54 12 16 24
极度不易开裂,可用碳含量较高的热处理后钢种熔金细密,用于拉伸模可大幅减少高张力钢板与普通钢板弯曲、拉伸成型时的刮痕 CMC-30N 09 12 16 20 24 32 龟裂之焊合,异种合金之对接与过渡,硬面制作之打底,高硬度钢之接合。
CMC-60N 16 24 用于高温作业环境之模具打底,耐热性奇佳,高硬度钢之接合。
CMC-61N 12 16 24 铸铁与高碳钢之接合,锌铝压铸模龟裂,焊合重建、铣铁焊补
CMC-67N 16 24 32 适合铸铁(铣铁)焊补、易雕刻加工。
CMC-SSH 16 20 24 专用于S45C 与铸钢制作硬面之模具焊丝。用于S45C与铸钢等模具钢局部,以焊接方式加强光洁度与硬度,主要用于:玻璃纤维模具、五金冲压模。 CMC-75 硬度 HRC 25~27 10 12 16 24
适用于塑料射出模之氩焊丝,蚀花性良好。使用于鞋模焊补,易雕刻加工。
CMC-PDS-3 硬度 HRC 28~30 09 10 12 16
适用于塑料射出模之氩焊丝,耐热模、抗腐蚀模,切削性,蚀花性良好。
CMC-718H 硬度 HRC 30~33 09 10 12 16
适用于塑料射出模之氩焊丝。焊后机械加工性良好,材质均匀纯度高、抛旋光性良好,光蚀刻花性良好
CMC-2738 硬度 HRC 32~35 09 10 12 16
大型射出成型模,耐热模,抗腐蚀模,蚀花性良好,具备优良加工性能,易切削和电蚀。光蚀刻花性优异
CMC-P20 硬度 HRC 30 09 10 12 16 20 24
塑料射出模,耐热模(铸铜模)
CMC-P20H 硬度 HRC 30~33 10 12 16
在原有产品CMC-P20的优点上加强硬度
适用于塑料射出模之氩焊丝。焊后机械加工性与蚀花性良好,材质均匀硬度高
CMC-P20Ni 硬度 HRC 30 09 12 16 24
在原有产品CMC-P20的优点上加强抛光性能适用于塑料射出模之氩焊丝。焊后机械加工性与光蚀刻花性优异
CMC-NAK80 硬度 HRC 35~40 09 12 16 24
塑料射出模,镜面钢
CMC-NAK100 硬度 HRC 35~40 09 16
在原有产品CMC-NAK80的优点上加强抛光性能
有极优良的抛光性要求
CMC-S136H 硬度 HRC50~54 09 12 16 24
防酸模具钢,适合生产PS、SAN等塑料射出模之专用氩焊条。焊后具有优良的抗腐蚀性、抛光性与耐磨性,机械加工性佳、淬硬时具有优良的稳定性。
CMC-2316 硬度 HRC30~34 12 16
防酸模具钢,适合PVC、POM、CA CMC-EMagic6 HRC 54~59 26 32CMC EMagic6为一高效型刀口焊条,实现低电流,高熔填率之理想;焊后熔金具优异韧性且耐冲击,饱满光滑,附着性佳,自动退壳,可机加工;适合于冷作钢损坏堆焊,特别适用于大型冲压模冲切部位。对于剪切工具的生产中,同样可以通过堆焊于低合金或一般的钢材上制作剪切边。
CMC-EMagic10 HRC 55~58 25 32
CMC EMagic10为一W、Cr含量较高之高效型刀口焊条,实现低电流,高熔填率之理想;适用于高速冲击之冲压模具刀锋与冲头,焊后熔金饱满光滑,附着性佳,自动退壳,可机加工,在高速高温的冲压工作环境下,也可保持耐磨性;特别适合于淬火硬化后模具损坏修复堆焊,仅一层可得较高硬度。熔金可随SKD11淬火,仍有高硬度。
CMC-Emagic7 HRC 52~55 32350mm
CMC-Emagic7 为一可直接焊于铸铁与铸钢之神奇电焊条,焊接附着性佳,从第1层开始即可得高硬度,如果注意道间温度,则不会随着焊层数增加而降低硬度;另外,直接焊于热处理后的Cr12MoV钢上,有较高的硬度表现,特殊碱性包覆可减少气孔产生;可平焊、立焊、角焊,熔填率奇高,可加速焊补效率,于交流焊时起火性稍差。
CMC-E58 HRC 57~59 24, 32, 40
抗磨耗,硬度安定性高适合于冷作钢损坏堆焊,特别是用于冷锻模、压延模、刀模、汽车冲压模、五金冲压模的切角、边。对于剪切工具的生产中,同样可以通过堆焊于低合金或一般的钢材上作为剪切边。也可以应用于耐磨耗机件之硬面制作。
CMC-ECI55 HRC 55-58 32350mm
特别适合用于深抽模具的R角修复与高硬度之拉延部位制作。可直接焊补于铸铁模具GGG70L、FCD、GM241等…熔金细密、具极高的耐磨硬度、易抛光。属高效焊条(熔填效率 120%)球墨铸铁、灰口铸铁与火焰淬火铸钢也可直接堆焊。
CMC-E46N HRC 45-48 24, 32
直接在铸铁上施焊,对于冲压模的金属磨耗非常有效。焊接金属第一层为奥氏体组织;从2层开始为马氏体组织耐磨耗性好。火焰淬火铸铁也可直接堆焊。
CMC-E46H HRC 44-49 32350mm
特别适合用于钼铬铸铁模具的R角修复与拉延部位制作。熔金细密、易抛光可防止钣件的刮伤;硬度高,适用于高要求的拉延筋制造。球墨铸铁、灰口铸铁与火焰淬火铸钢也可直接堆焊。
CMC-E45 HRC 48~52 26, 32, 40
为一接合性较好之中硬度钢焊条,适用于空冷钢、铸钢:如ICD5、7CrSiMnMoV…等等。汽车板金覆盖件模具及大型五金板金冲压模具之拉延、拉伸部位修补,也可用于硬面制作。
CMC-E64N 32350mm
铸铁用焊条,强度高、塑性好。适用于灰口铸铁及球墨铸铁、可机械加工。
CMC-ENCD HRC 25~28 32350mm
可直接在铸铁上施焊,特别适用于MoCr铸铁与球墨铸铁之焊补。为一低硬度铁基铸铁焊条,焊后可加工,且由于与铸铁之成分十分接近,所以不产生一般铸铁焊条之色差问题,且焊后可随同铸铁进行热处理。焊接性能良好,无气孔,裂痕。
CMC-E62N 32350mm
特别适用于铸铁模具,由于含镍量减低,所以可降低成本,铸钢模硬面制作打底缓冲层。
CMC-E12HA HRC 57-59 24, 32, 40
优异的红条,广泛使用于热锻、冷冲模、 抗磨耗硬面制作, 硬度安定性高, 使用于热锻模、冲压模、延压模、整边切模、车模、热滚压轮、耐磨耗机件之硬面制作。
CMC-E60A HRC 60~62 26, 32
硬度稳定性高,耐中高温磨耗。适用于中碳钢,低合金钢之硬面制作,耐磨耗之刀具机件修补,车模,热锻冷锻切口模具焊补。
CMC-E30N 高张力、高韧度 26, 32
高硬度钢之接合,钢模座固定,铸钢模硬面制作打底缓冲层,龟裂之焊合。
CMC-E61N 32350mm
适于各种铸铁,合金铸铁,钢与铸铁接合,镍及其合金等,或耐水压铸件之焊接。
CMC-E7W(停产) HRC 53~55 32, 40
适用于空冷钢(ICD5)或铸钢之刀口制作与损坏堆焊,特别是用于制作汽车钣金模切边、冲孔、翻边部位,轻工钣金冲压模的切角、边。对于剪切工具的生产中,同样可以通过堆焊作为剪切边。也可以应用于耐磨耗机件之硬面制作。
CMC-E47N HRC 44~50 32350mm
可直接在铸铁上施焊之焊条,使用于铸铁模之刀口、延压部位十分方便。
CMC-EH10 HRC 46~52 32, 40
适用于中大型热锻模的生产、修复与表面再造。由于降低了铬含量,且提高钼、钨、钒的合金成分,形成高温磨耗与韧性的良好平衡,大幅提高截面积较大的热作模具使用寿命。广泛使用于中大型热锤锻模、热锻模具、热重力压铸模、耐磨耗机件之硬面制作。
CMC-EH13 HRC 55~58 24, 32
适合于热加工工具耐损坏焊补,特别是热切工具,热剪工具,热刨工具的切角边。对于在剪切加工工具的生产中,同样可以通过焊补在低合金或一般的钢上作为剪切边。 CMC-W Magic2 04 05 适用各种锻造用模具钢之镭射(激光)焊丝,硬度稳定性高、耐高温与冲击。CMC-W 718N 02 03 04 05 06在原有CMC-W718的优点上,加强抛光性能,焊后机加工容易,咬花蚀纹性能良好。
CMC-W 718H 02 03 04 05 06 适用于塑料射出模之激光焊丝。焊丝机械加工性良好,材质均匀纯度高、抛光性良好,光蚀刻花性良好。
CMC-W 2738 02 03 04 05 06 焊补塑料射出模、耐热模,具备优良加工性能,易切削、抛光、电蚀、刻花性良好之激光焊丝。焊补塑料射出模、耐热模,具备优良加工性能,易切削、抛光、电蚀,刻花性良好之镭射激光焊丝。
CMC-W P20 02 03 04 05 06 焊补塑料射出模、耐热模(铸铜模)。
CMC-W P20H 02 03 04 05 06 在原有产品CMC-WP20的优点上加强耐磨耗性能,适用于修补塑料射出模、蚀花抛光性能良好。
CMC-W PX5 02 03 04 焊补塑料射出模、耐热模、抗腐蚀模、蚀花性良好,具备优良加工性能,易切削抛光和电蚀。
CMC-W NAK80 02 03 04 05 06 焊补塑料射出模、镜面钢。
CMC-W NAK100 03 04 在原有产品CMC-WNAK80的优点上加强抛光性能,具有极优良抛光性要求之镭射激光焊丝。
CMC-W S136N 02 03 04 05在原有产品CMC-WS136的优点上加强抛光性能,同时避免了焊接后镕金上的水波纹路,大大减轻焊后的抛光加工时间。
CMC-W S136H 02 03 04 05 焊补塑料射出模,抗腐蚀、渗透性良好。
CMC-W 2316 02 03 04 焊补塑料射出模,抗腐蚀、渗透性良好。
CMC-W 2083 02 03 04 05 焊补塑料射出模,抗腐蚀、渗透性良好。
CMC-W 618HH 02 03 04 焊补塑料射出模、耐热模。
CMC-W 60N 03 04 用于耐高温钢之打底与接合,铸钢焊补沙孔缺陷。适用玻璃模具之镭射(激光)焊丝,焊后表面光亮。
CMC-W 60 02 03 04 适用于鞋模焊补,易雕刻加工。
CMC-W 75 02 03 04 焊补塑料射出模、蚀花性良好。适用于鞋模焊补,易雕刻加工
CMC-W SKD61H 02 03 04 06 焊补铝铜压铸模、具良好耐热、耐磨、耐龟裂性良好、塑料模具之堆焊(EPN)焊补之激光焊丝
CMC-W SKS3 02 03 04 05 焊补刀具、冲模、切模高耐磨性之镭射激光焊丝。
CMC-W Nitride 1 03 04 用于氮化后模具,要求气孔最少,硬度不高之情况
CMC-W Nitride2 02 03 04 05 用于氮化后模具,要求硬度高,气孔少之情况
CMC-W 8407H 02 03 04 06 适用各种压铸模具之镭射(激光)焊丝,硬度稳定性高、耐高温与挤压,不易磨损。
CMC-W 8407 02 03 04 05 06 焊补锌、铝、锡等有色合金及铜合金之压铸模。
CMC-W QRO90 02 03 04 06 焊补热锻模、热切模、热冲模、热加工成型模、热作工具、压铸模钢。
CMC-W SKD61 02 03 04 05 06 焊补铝铜压铸模、具良好耐热、耐磨、耐龟裂性。
CMC-W SKD11-3 02 03 04 焊补冷作钢、冲模、切模、刀具、成型模、工件硬面制作。
CMC-W 30N 02 03 04 高硬度钢之接合,硬面制作之打底,龟裂之焊合。
欢迎分享,转载请注明来源:品搜搜测评网