Batch Normlization原理

Batch Normlization原理,第1张

在深度学习中,由于问题的复杂性,我们往往会使用较深层数的网络进行训练,相信很多炼丹的朋友都对调参的困难有所体会,尤其是对深层神经网络的训练调参更是困难且复杂。

在这个过程中,我们需要去尝试不同的学习率、初始化参数方法(例如Xavier初始化)等方式来帮助我们的模型加速收敛。深度神经网络之所以如此难训练,其中一个重要原因就是网络中层与层之间存在高度的关联性与耦合性。下图是一个多层的神经网络,层与层之间采用全连接的方式进行连接。

我们规定左侧为神经网络的底层,右侧为神经网络的上层。那么网络中层与层之间的关联性会导致如下的状况:随着训练的进行,网络中的参数也随着梯度下降在不停更新。

Batch Normalization的原论文作者给了Internal Covariate Shift一个较规范的定义: 在深层网络训练的过程中,由于网络中参数变化而引起内部结点数据分布发生变化的这一过程被称作Internal Covariate Shift

这句话怎么理解呢?我们定义每一层的线性变换为 ,其中 代表层数;非线性变换为 ,其中, 为 第 层的激活函数。

醉着梯度下降的进行,每一层的参数 与 都会被更新,那么 的分布也就发生了改变,进而 也同样出现分布的改变。而 作为第 层的输入,意味着 层就需要去不停适应这种数据分布的变化,这一过程就被叫做Internal Covariate Shift。

(1)上层网络需要不停地调整来适应输入数据分布的变化,导致网络学习速度的降低

我们在上面提到梯度下降的过程会让每一层的参数 和 发生变化,进而使得每一层的线性与非线性计算结果分布产生变化。后层网络就要不停地适应这种分布的变化,这个时候就会使得整个网络的学习速率变慢。

(2)网络的训练过程容易陷入梯度饱和区,减缓网络收敛的速度

当我们在神经网络中采用饱和激活函数(saturated activation function)时,例如sigmoid,tanh激活函数,很容易使得模型训练陷入梯度饱和区(saturated regime)。随着模型训练的进行,我们的参数 会逐渐更新并变大,此时 就会随着变大,并且 还要收到更底层网络参数 的影响,随着网络层数的增加, 很容易陷入梯度饱和区,此时梯度会变得很小甚至接近与0,参数的更新速度就会变慢,进而就会放慢网络的收敛速度。

对于激活函数梯度饱和的问题,有两种解决思路:第一种就是使用ReLU等非线性激活函数,可以一定程度上解决训练陷入梯度饱和区的问题。另一种就是,我们可以让激活函数的分布保持在一个稳定的状态,来尽可能避免它们陷入梯度饱和区,也就是Normalization的思路。

要缓解ICS的问题,就要明白它产生的原因。ICS产生的原因是由于参数更新带来的网络中每一层输入值分布的改变,并且随着网络层数的加深而变得更加严重,因此我们可以通过固定每一层网络输入值的分布来对减缓ICS问题。

(1)白化

白化(Whitening)是机器学习里面常用的一种规范化数据分布的方法,主要是PCA白化与ZCA白化。白化是对输入数据分布进行变换,进而达到以下两个目的:

(2)Batch Normalization提出

既然白化可以解决这个问题,为什么我们还要提出别的解决办法?当然是现有的方法具有一定的缺陷,白化主要有以下两个问题:

既然有了上面两个问题,那我们的解决思路就很简单,一方面,我们提出的normalization方法要能够简化计算过程;另一方面又需要经过规范化处理后让数据尽可能保留原始的表达能力。于是就有了简化+改进版的白化——Batch Normalization。

既然白化计算过程比较复杂,那我们就简化一点,比如我们可以尝试单独对每个特征进行normalizaiton就可以了,让每个特征都有均值为0,方差为1的分布就OK。

另一个问题,既然白化操作减弱了网络中每一层输入数据表达能力,那我就再加个线性变换操作,让这些数据再能够尽可能恢复本身的表达能力就好了。

因此,基于上面两个解决问题的思路,作者提出了Batch Normalization,下一部分来具体讲解这个算法步骤。

举例计算:

上图展示了一个batch size为2(两张)的Batch Normalization的计算过程。

假设feature1、feature2分别是由image1、image2经过一系列卷积池化后得到的特征矩阵,feature的channel数均为2,那么 代表该batch的所有feature的channel1的数据,同理 代表该batch的所有feature的channel2的数据。

然后分别计算 和 的均值和方差,得到我们的 和 两个向量。

然后在根据标准差计算公式分别计算每个channel的值(公式中的 是一个很小的常量,防止分母为零的情况)

在我们训练网络的过程中,我们是通过一个batch一个batch的数据进行训练的,但是我们在预测过程中通常都是输入一张进行预测,此时batch size为1,如果在通过上述方法计算均值和方差就没有意义了。所以我们在训练过程中要去不断的计算每个batch的均值和方差,并使用移动平均(moving average)的方法记录统计的均值和方差,在我们训练完后我们可以近似认为我们所统计的均值和方差就等于我们整个训练集的均值和方差。然后在我们验证以及预测过程中,就使用我们统计得到的均值和方差进行标准化处理。

在训练过程中,均值 和方差 通过计算当前批次数据得到的记为 和 ,而我们在预测过程中所使用的均值和方差是一个训练过程中保存的统计量,记 和 , 和 的具体更新策略如下,momentum默认取值为01:

需要注意的是:

下面是使用pytorch做的测试:

(1)bn_process函数是自定义的bn处理方法验证是否和使用官方bn处理方法结果一致。在bn_process中计算输入batch数据的每个维度(这里的维度是channel维度)的均值和标准差(标准差等于方差开平方),然后通过计算得到的均值和总体标准差对feature每个维度进行标准化,然后使用均值和样本标准差更新统计均值和标准差。

(2)初始化统计均值是一个元素为0的向量,元素个数等于channel深度;初始化统计方差是一个元素为1的向量,元素个数等于channel深度,初始化 , 。

设置一个断点进行调试,查看下官方bn对feature处理后得到的统计均值和方差。我们可以发现官方提供的bn的running_mean和running_var和我们自己计算的calculate_mean和calculate_var是一模一样的(只是精度不同):

输出结果如下:

从结果可以看出:通过自定义bn_process函数得到的输出以及使用官方bn处理得到输出,明显结果是一样的(只是精度不同)。

Batch Normalization在实际工程中被证明了能够缓解神经网络难以训练的问题,BN具有的有事可以总结为以下四点:

(1)BN使得网络中每层输入数据的分布相对稳定,加速模型学习速度

BN通过规范化与线性变换使得每一层网络的输入数据的均值与方差都在一定范围内,使得后一层网络不必不断去适应底层网络中输入的变化,从而实现了网络中层与层之间的解耦,允许每一层进行独立学习,有利于提高整个神经网络的学习速度。

(2)BN使得模型对网络中的参数不那么敏感,简化调参过程,使得网络学习更加稳定

在神经网络中,我们经常会谨慎地采用一些权重初始化方法(例如Xavier)或者合适的学习率来保证网络稳定训练。

当学习率设置太高时,会使得参数更新步伐过大,容易出现震荡和不收敛。但是使用BN的网络将不会受到参数数值大小的影响。

因此,在使用Batch Normalization之后,抑制了参数微小变化随着网络层数加深被放大的问题,使得网络对参数大小的适应能力更强,此时我们可以设置较大的学习率而不用过于担心模型divergence的风险。

3)BN允许网络使用饱和性激活函数(例如sigmoid,tanh等),缓解梯度消失问题

在不使用BN层的时候,由于网络的深度与复杂性,很容易使得底层网络变化累积到上层网络中,导致模型的训练很容易进入到激活函数的梯度饱和区;通过normalize操作可以让激活函数的输入数据落在梯度非饱和区,缓解梯度消失的问题;另外通过自适应学习 与 又让数据保留更多的原始信息。

(4)BN具有一定的正则化效果

在Batch Normalization中,由于我们使用mini-batch的均值与方差作为对整体训练样本均值与方差的估计,尽管每一个batch中的数据都是从总体样本中抽样得到,但不同mini-batch的均值与方差会有所不同,这就为网络的学习过程中增加了随机噪音,与Dropout通过关闭神经元给网络训练带来噪音类似,在一定程度上对模型起到了正则化的效果。

Batch Normalization原理与实战

Batch Normalization详解以及pytorch实验

数据输入的是一张(输入层),CONV表示卷积层,RELU表示激励层,POOL表示池化层,Fc表示全连接层

全连接神经网络需要非常多的计算资源才能支撑它来做反向传播和前向传播,所以说全连接神经网络可以存储非常多的参数,如果你给它的样本如果没有达到它的量级的时候,它可以轻轻松松把你给他的样本全部都记下来,这会出现过拟合的情况。

所以我们应该把神经元和神经元之间的连接的权重个数降下来,但是降下来我们又不能保证它有较强的学习能力,所以这是一个纠结的地方,所以有一个方法就是 局部连接+权值共享 ,局部连接+权值共享不仅权重参数降下来了,而且学习能力并没有实质的降低,除此之外还有其它的好处,下来看一下,下面的这几张:

一个图像的不同表示方式

这几张描述的都是一个东西,但是有的大有的小,有的靠左边,有的靠右边,有的位置不同,但是我们构建的网络识别这些东西的时候应该是同一结果。为了能够达到这个目的,我们可以让的不同位置具有相同的权重(权值共享),也就是上面所有的,我们只需要在训练集中放一张,我们的神经网络就可以识别出上面所有的,这也是 权值共享 的好处。

卷积神经网络就是局部连接+权值共享的神经网络。

现在我们对卷积神经网络有一个初步认识了,下面具体来讲解一下卷积神经网络,卷积神经网络依旧是层级结构,但层的功能和形式做了改变,卷积神经网络常用来处理数据,比如识别一辆汽车:

在输出到神经网络之前,常常先进行图像处理,有 三种 常见的图像的处理方式:

均值化和归一化

去相关和白化

有一个性质叫做局部关联性质,一个的像素点影响最大的是它周边的像素点,而距离这个像素点比较远的像素点二者之间关系不大。这个性质意味着每一个神经元我们不用处理全局的了(和上一层全连接),我们的每一个神经元只需要和上一层局部连接,相当于每一个神经元扫描一小区域,然后许多神经元(这些神经元权值共享)合起来就相当于扫描了全局,这样就构成一个特征图,n个特征图就提取了这个的n维特征,每个特征图是由很多神经元来完成的。

在卷积神经网络中,我们先选择一个局部区域(filter),用这个局部区域(filter)去扫描整张。 局部区域所圈起来的所有节点会被连接到下一层的 一个节点上 。我们拿灰度图(只有一维)来举例:

局部区域

是矩阵式的,将这些以矩阵排列的节点展成了向量。就能更好的看出来卷积层和输入层之间的连接,并不是全连接的,我们将上图中的红色方框称为filter,它是22的,这是它的尺寸,这不是固定的,我们可以指定它的尺寸。

我们可以看出来当前filter是22的小窗口,这个小窗口会将矩阵从左上角滑到右下角,每滑一次就会一下子圈起来四个,连接到下一层的一个神经元,然后产生四个权重,这四个权重(w1、w2、w3、w4)构成的矩阵就叫做卷积核。

卷积核是算法自己学习得到的,它会和上一层计算,比如,第二层的0节点的数值就是局部区域的线性组合(w1 0+w2 1+w3 4+w4 5),即被圈中节点的数值乘以对应的权重后相加。

卷积核计算

卷积操作

我们前面说过不用向量表示是为了保留平面结构的信息。 同样的,卷积后的输出若用上图的向量排列方式则丢失了平面结构信息。 所以我们依然用矩阵的方式排列它们,就得到了下图所展示的连接,每一个蓝色结点连接四个**的结点。

卷积层的连接方式

是一个矩阵然后卷积神经网络的下一层也是一个矩阵,我们用一个卷积核从矩阵左上角到右下角滑动,每滑动一次,当然被圈起来的神经元们就会连接下一层的一个神经元,形成参数矩阵这个就是卷积核,每次滑动虽然圈起来的神经元不同,连接下一层的神经元也不同,但是产生的参数矩阵确是一样的,这就是 权值共享

卷积核会和扫描的的那个局部矩阵作用产生一个值,比如第一次的时候,(w1 0+w2 1+w3 4+w4 5),所以,filter从左上到右下的这个过程中会得到一个矩阵(这就是下一层也是一个矩阵的原因),具体过程如下所示:

卷积计算过程

上图中左边是图矩阵,我们使用的filter的大小是3 3的,第一次滑动的时候,卷积核和矩阵作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,会产生一个值,这个值就是右边矩阵的第一个值,filter滑动9次之后,会产生9个值,也就是说下一层有9个神经元,这9个神经元产生的值就构成了一个矩阵,这矩阵叫做特征图,表示image的某一维度的特征,当然具体哪一维度可能并不知道,可能是这个图像的颜色,也有可能是这个图像的轮廓等等。

单通道总结 :以上就是单通道的的卷积处理,是一个矩阵,我们用指定大小的卷积核从左上角到右下角来滑动,每次滑动所圈起来的结点会和下一层的一个结点相连,连接之后就会形成局部连接,每一条连接都会产生权重,这些权重就是卷积核,所以每次滑动都会产生一个卷积核,因为权值共享,所以这些卷积核都是一样的。卷积核会不断和当时卷积核所圈起来的局部矩阵作用,每次产生的值就是下一层结点的值了,这样多次产生的值组合起来就是一个特征图,表示某一维度的特征。也就是从左上滑动到右下这一过程中会形成一个特征图矩阵(共享一个卷积核),再从左上滑动到右下又会形成另一个特征图矩阵(共享另一个卷积核),这些特征图都是表示特征的某一维度。

三个通道的如何进行卷积操作?

至此我们应该已经知道了单通道的灰度图是如何处理的,实际上我们的都是RGB的图像,有三个通道,那么此时图像是如何卷积的呢?

彩色图像

filter窗口滑的时候,我们只是从width和height的角度来滑动的,并没有考虑depth,所以每滑动一次实际上是产生一个卷积核,共享这一个卷积核,而现在depth=3了,所以每滑动一次实际上产生了具有三个通道的卷积核(它们分别作用于输入的蓝色、绿色、红色通道),卷积核的一个通道核蓝色的矩阵作用产生一个值,另一个和绿色的矩阵作用产生一个值,最后一个和红色的矩阵作用产生一个值,然后这些值加起来就是下一层结点的值,结果也是一个矩阵,也就是一张特征图。

三通道的计算过程

要想有多张特征图的话,我们可以再用新的卷积核来进行左上到右下的滑动,这样就会形成 新的特征图

三通道的卷积过程

也就是说增加一个卷积核,就会产生一个特征图,总的来说就是输入有多少通道,我们的卷积核就需要对应多少通道,而本层中卷积核有多少个,就会产生多少个特征图。这样卷积后输出可以作为新的输入送入另一个卷积层中处理,有几个特征图那么depth就是几,那么下一层的每一个特征图就得用相应的通道的卷积核来对应处理,这个逻辑要清楚,我们需要先了解一下 基本的概念:

卷积计算的公式

4x4的在边缘Zero padding一圈后,再用3x3的filter卷积后,得到的Feature Map尺寸依然是4x4不变。

填充

当然也可以使用5x5的filte和2的zero padding可以保持的原始尺寸,3x3的filter考虑到了像素与其距离为1以内的所有其他像素的关系,而5x5则是考虑像素与其距离为2以内的所有其他像素的关系。

规律: Feature Map的尺寸等于

(input_size + 2 padding_size − filter_size)/stride+1

我们可以把卷积层的作用 总结一点: 卷积层其实就是在提取特征,卷积层中最重要的是卷积核(训练出来的),不同的卷积核可以探测特定的形状、颜色、对比度等,然后特征图保持了抓取后的空间结构,所以不同卷积核对应的特征图表示某一维度的特征,具体什么特征可能我们并不知道。特征图作为输入再被卷积的话,可以则可以由此探测到"更大"的形状概念,也就是说随着卷积神经网络层数的增加,特征提取的越来越具体化。

激励层的作用可以理解为把卷积层的结果做 非线性映射

激励层

上图中的f表示激励函数,常用的激励函数几下几种:

常用的激励函数

我们先来看一下激励函数Sigmoid导数最小为0,最大为1/4,

激励函数Sigmoid

Tanh激活函数:和sigmoid相似,它会关于x轴上下对应,不至于朝某一方面偏向

Tanh激活函数

ReLU激活函数(修正线性单元):收敛快,求梯度快,但较脆弱,左边的梯度为0

ReLU激活函数

Leaky ReLU激活函数:不会饱和或者挂掉,计算也很快,但是计算量比较大

Leaky ReLU激活函数

一些激励函数的使用技巧 :一般不要用sigmoid,首先试RELU,因为快,但要小心点,如果RELU失效,请用Leaky ReLU,某些情况下tanh倒是有不错的结果。

这就是卷积神经网络的激励层,它就是将卷积层的线性计算的结果进行了非线性映射。可以从下面的图中理解。它展示的是将非线性操作应用到一个特征图中。这里的输出特征图也可以看作是"修正"过的特征图。如下所示:

非线性操作

池化层:降低了各个特征图的维度,但可以保持大分重要的信息。池化层夹在连续的卷积层中间,压缩数据和参数的量,减小过拟合,池化层并没有参数,它只不过是把上层给它的结果做了一个下采样(数据压缩)。下采样有 两种 常用的方式:

Max pooling :选取最大的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图中取出最大的元素,最大池化被证明效果更好一些。

Average pooling :平均的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图算出平均值

Max pooling

我们要注意一点的是:pooling在不同的depth上是分开执行的,也就是depth=5的话,pooling进行5次,产生5个池化后的矩阵,池化不需要参数控制。池化操作是分开应用到各个特征图的,我们可以从五个输入图中得到五个输出图。

池化操作

无论是max pool还是average pool都有分信息被舍弃,那么部分信息被舍弃后会损坏识别结果吗?

因为卷积后的Feature Map中有对于识别物体不必要的冗余信息,我们下采样就是为了去掉这些冗余信息,所以并不会损坏识别结果。

我们来看一下卷积之后的冗余信息是怎么产生的?

我们知道卷积核就是为了找到特定维度的信息,比如说某个形状,但是图像中并不会任何地方都出现这个形状,但卷积核在卷积过程中没有出现特定形状的位置卷积也会产生一个值,但是这个值的意义就不是很大了,所以我们使用池化层的作用,将这个值去掉的话,自然也不会损害识别结果了。

比如下图中,假如卷积核探测"横折"这个形状。 卷积后得到3x3的Feature Map中,真正有用的就是数字为3的那个节点,其余数值对于这个任务而言都是无关的。 所以用3x3的Max pooling后,并没有对"横折"的探测产生影响。 试想在这里例子中如果不使用Max pooling,而让网络自己去学习。 网络也会去学习与Max pooling近似效果的权重。因为是近似效果,增加了更多的参数的代价,却还不如直接进行最大池化处理。

最大池化处理

在全连接层中所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。当前面卷积层抓取到足以用来识别的特征后,接下来的就是如何进行分类。 通常卷积网络的最后会将末端得到的长方体平摊成一个长长的向量,并送入全连接层配合输出层进行分类。比如,在下面图中我们进行的图像分类为四分类问题,所以卷积神经网络的输出层就会有四个神经元。

四分类问题

我们从卷积神经网络的输入层、卷积层、激活层、池化层以及全连接层来讲解卷积神经网络,我们可以认为全连接层之间的在做特征提取,而全连接层在做分类,这就是卷积神经网络的核心。

首先看一个例子:

ztc/ 上下/ 齐/ 拼搏/ ,誓为/ 春战/ 做/ 贡献

这句话呢通顺,意思明白,那如果换一下词的位置:

上下/ 齐/ 拼搏/ ztc/ ,春站/ 做/ 贡献/ 誓为

意思含糊了,但是大概意思还是能猜到,那如果在变换一下:

拼搏/ 齐/ ztc/ 上下/ ,贡献/ 誓为/ 做/ 春战

现在这句话已经不知所云了,如何判断这个由词序组成的序列是否符合文法、含义是否正确?

统计语言模型:一个句子是否合理,就看他的可能性的大小,即他的概率大小。

假设一个句子S,由一连串特定顺序的词W1, W2,WT 组成,T是句子中词的个数,则S出现的概率P(S) = P(w1, w2,wT)

利用条件概率公式展开:

P(w1,w2,wT) = P(w1) P(w2|w1) P(w3|w1,w2) P(wT|w1,w2,wT-1)

即:

当语料中词典大小为100,000,句子平均长度为5时,需要学习的参数大概100000 5 -1 个,为了降低计算复杂度,并考虑到词序列中离的更近的词通常在语义上也更相关,所以在计算时可以通过只使用前面n-1个词来近似计算,即n-grams:

n-grams存在的问题:1泛化时常常有训练语料中没有出现过的词序列;2没有考虑词之间的相似性。

NNLM

1对词库里的每个词指定一个分布的词向量

2定义联合概率(通过序列中词对应的词向量

3学习词向量和概率函数的参数

why it works

如果我们已知 “走” 和 “跑” 是相似词,那很容易通过 ”猫在屋里跑“ 推出 “猫在屋里走“,因为相似的词会有相似的词向量,而且概率函数是特征的平滑函数,所以特征的微小变化,只会对概率值产生一个很小的影响。即:1相似词在特征空间距离更接近;2概率函数是一个相对平滑的函数,对特征值的变化不是非常敏感。

所以训练语料中句子的出现不光增加了自身的概率,也增加了他与周围句子的概率(句子向量空间)

目标:f(wt ,··· ,wt−n+1) = Pˆ(wt |w1,w2,wt-1 )

约束:

1 , ∑ |V| i=1 f(i,wt−1,··· ,wt−n+1) = 1

2f>0

通过得到的条件概率进行相乘,得到词序列的联合概率

模型被分成二部分:

1特征映射:通过映射矩阵 C∈R ∣V∣×m

将输入的每个词映射为一个特征向量,C(i)∈Rm 表示词典中第 i 个词对应的特征向量,其中 m 表示特征向量的维度。

2概率函数g。通过context中词的词向量来映射下一个词的条件概率。g的输出是一个向量,其中第i个元素表示了字典中第i个词的概率。完整的模型表达如下:

函数f由两个映射(g and c)组成,其中c由所有的上下文共享。

训练过程中的参数就由两个映射组成,设 g 对应参数为w,c映射的参数就是自身,则 θ=(c, w)

训练过程就是学习θ的最大似然:

其中R(θ) 是正则项。

模型中参数与字典大小V成线性关系,且与n(n-grams)成线性关系,不过可以通过共享结构降低参数数量,如延时神经网络或循环神经网络。

实验中,神经网络层只有一个隐层,有一个可选的词向量到输出的直连层,实际上就有两个隐层,一个共享的词向量C 层,该层没有激活函数,还有一个tanh激活函数的隐层;最后的输出层是一个softmax层,来保证所有结果的和为1:

注意:第一层是没有非线性激活函数的,因为非线性激活函数会带来其他信息(联想神经网络中非线性激活函数),而正是这种直接的线性变换,才能让第一层的参数来作为词向量

用yi表示每个输出词的对数概率,则

y = b+Wx+U tanh(d +Hx)

其中x是词向量的拼接,x = (c(wt-1),c(wt-2),c(wt-n+1))

并行

参数与输入的窗口大小和字典的大小成线性,但是计算量却比n-grams 要大很多,首先n-grams中不需要每次都计算所有词的概率,只需要相关词频的线性组合,另外神经网络中主要瓶颈是输出层的激活计算。

out-of-vocabulary word

首先根据窗口上下文可能出现的词,进行加权求和初始化新词的词向量,然后将新词 j 加入字典,然后利用这部分数据集重新训练,进行retune

后续工作

1,分解网络到子网络,如使用词聚类,构建许多小的子网络可能更快更简单

2,用树结构来表达条件概率:神经网络作用在每一个节点上,每个节点代表根据上下问得到该词类的可能性,叶子节点代表词的可能性,这种结构可以将计算复杂度从|v| 降低到 log|v|

3,梯度传播时可以只在部分输出词上进行,如某些条件下最相似的(如三元模型)。如果用在语音识别,可以只计算听觉上相似的词。

4,引入先验知识,如语义信息和语法信息。通过在神经网络结构中共享更多的结构与参数,可以捕获长期的上下文信息,

5,如何解释神经网络得到的词向量

6,上述模型对每个单词分配一个在语义空间的点,所以无法解决一词多义问题。如何扩展当前模型,在语义空间中为词分配多个点来代表词的不同语义。

作者提出的后续工作中,目前是很多人的研究方向,一些已经被证明有效。

第一个,优化网络结构,提到了从数据方向,构建更多的子网络,还可以直接对网络结构本身进行优化,如word2vec,将神经网络层去掉;

第二个,由于计算瓶颈在计算output的概率(对每个词计算概率,需要softmax归一化),所以提出可以通过树结构,来避免直接对所有词进行计算,如 Hierarchical Softmax

第三个也是在计算输出时,只通过一部分词来进行梯度传播,如负采样

第四个是通过共享结构,来捕获更多上下文信息,如GPT,Bert

第五个是如何解释,也是目前很多人的研究方向

第六个是一次多义的解决方法,如ELMO

参考:

http://wwwiroumontrealca/~vincentp/Publications/lm_jmlrpdf

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2529270.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-10
下一篇2023-12-10

随机推荐

  • 柔嘉艾灸是上市公司吗

    不是。根据查询BOSS直聘网显示:1、柔嘉企业是一家集科研、生产、销售,投资、教育培训、营销咨询、专业会展、网络科技为一体的多元化、现代化集团公司,也是国内最具有发展潜质的健康产业公司。2、柔嘉艾灸没有向证券监督管理机构提出股票上市申请。柔

    2024-04-15
    22900
  • 妮维雅630淡斑精华真假

    关于妮维雅630淡斑精华的真假问题,我可以告诉你,这取决于你购买的渠道和产品包装。如果你选择在正规渠道购买,比如官网、专柜或者认可的线上零售商,那么你购买到的产品应该是真品。如果你选择在一些不明来源的小店或者个人手中购买,那么就存在假货风险

    2024-04-15
    19000
  • 全球排行前3的化妆品牌,女生应该都应该知道!

    没有女生能抵抗的了化妆品的诱惑吧,那么在你的心里排名前三的是什么呢?雅诗兰黛这个品牌相信大家也不会陌生,我知道他家品牌卖的东西多(化妆品、护肤品、香水),都具有创新性,技术先进性并且被证明为有效,我是比较喜欢他家的dw粉底液,在涂之前一定要

    2024-04-15
    20200
  • nivea防晒霜怎么样_妮维雅防晒霜怎么样

    妮维雅nivea防晒霜是一款来自德国的护肤品牌,这款新防晒霜同系列防晒产品区别也会比较明显,下面我们就一起来看看效果好不好!我点评这款和一直卖的妮维雅经典防晒乳有什么区别虽然两款质地很相似,但这一款的防晒指数更高,SPF50 P

    2024-04-15
    18400
  • SK2不同系列该怎么选择?4种情况对号入座

    SK-II我们只知道神仙水,但是神仙水到底适不适合你也不好说~那么多个系列,按需选择才对。下面我带大家来看一下SK2不同系列该怎么选择?4种情况对号入座。SK2不同系列该怎么选择如果你的皮肤偏油性,耐受力好,可以放心大胆地入SK-I

    2024-04-15
    10100
  • 哪种唇膏可以持久保持嘴唇水润又不油??

    1卡姿兰的润唇者哩16元:很滋润哦,舒服不油不腻正合适 2雅芳草莓纯膏13元:冬天用很好,很滋润,很甜,很淡,有点红红的颜色不用再上唇彩了。夏天用就太油了 3妮维雅润唇膏-SPF15抗紫外型 195元(送妮维雅娇柔洁肤晶露18m):

    2024-04-15
    8000
  • 93年康银阁套盒发行量

    康银阁大四连藏品名称第四套人民币四连体大全套(康银阁)  装帧单位北京康银阁钱币有限公司  发行时间2002年3月  发行数量100000册(约60000册被非法裁切成第四套大全套全同号)  藏品面值12912  藏品内容收录了第四套人民币

    2024-04-15
    8900

发表评论

登录后才能评论
保存