2D卷积操作如图1所示,为了解释的更清楚,分别展示了 单通道 和 多通道 的操作。且为了画图方便,假定只有1个filter,即输出图像只有一个chanel。
针对 单通道 ,输入图像的channel为1,即输入大小为(1, height, weight),卷积核尺寸为 (1, k_h, k_w),卷积核在输入图像上的的空间维度(即(height, width)两维)上进行进行滑窗操作,每次滑窗和 (k_h, k_w) 窗口内的values进行卷积操作(现在都用相关操作取代),得到输出图像中的一个value。
针对 多通道 ,假定输入图像的channel为3,即输入大小为(3, height, weight),卷积核尺寸为 (3, k_h, k_w), 卷积核在输入图像上的的空间维度(即(height, width)两维)上进行进行滑窗操作,每次滑窗与3个channels上的 (k_h, k_w) 窗口内的所有的values进行相关操作,得到输出图像中的一个value。
3D卷积操作如图2所示,同样分为 单通道 和 多通道 ,且只使用一个filter,输出一个channel。
其中,针对 单通道 ,与2D卷积不同之处在于,输入图像多了一个 depth 维度,故输入大小为(1, depth, height, width),卷积核也多了一个k_d维度,因此卷积核在输入3D图像的空间维度(height和width维)和depth维度上均进行滑窗操作,每次滑窗与 (k_d, k_h, k_w) 窗口内的values进行相关操作,得到输出3D图像中的一个value。
针对 多通道 ,输入大小为(3, depth, height, width),则与2D卷积的操作一样,每次滑窗与3个channels上的 (k_d, k_h, k_w) 窗口内的所有values进行相关操作,得到输出3D图像中的一个value。
参考
CNN中卷积层的计算细节
欢迎分享,转载请注明来源:品搜搜测评网