(一)、样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量 。
湿消化法:在食品的重金属检验中,样品前处理最为食品检验的关键步骤,直接影响分析结果的精密度和准确度,选择合适的前处理方法,缩短样品的前处理时间,是在保证检验质量的同时提高检验效率的一个重要方法。湿消化法是在适量的食品样品中,加入氧化性强酸,加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物,以便进行分析测定。湿法消化是应用比较广泛的一种食品样品前处理方法,该方法实用性强,几乎所有的食品都可以用该方法消化。
(二)、各项重金属的检测原理及采用标准
1、重金属砷的检测原理及采用标准
采用国家标准硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈**,经仪器检测得出砷含量。
2、重金属铅的检测原理及采用标准
采用国家标准二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。
3、重金属铬的检测原理及采用标准
样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。
4、重金属镉的检测原理及采用标准
采用国家标准比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。
5、重金属汞的检测原理及采用标准
采用国家标准二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。
6、重金属镍的检测原理及采用标准
采用国家标准丁二酮肟比色法,即样品经消化后,在强碱性条件下,加入一种过氧化剂,镍与丁二酮肟生成红褐色络合物,络合物颜色的深浅与镍含量呈正比,比色测定可得出镍含量。
7、重金属铁的检测原理及采用标准
样品经消化后,用还原剂将铁还原成二价铁,在PH2—9的范围内,二价铁与邻啡啰啉反应生成橙红色络合物,络合物颜色的深浅与铁含量呈正比,比色测定可得出铁含量。
8、重金属铝的检测原理及采用标准
采用国家标准铬天青S比色法,样品经过消化处理后,三价铝离子在缓冲溶液介质中,与铬天青S及十六烷基溴化铵反应形成蓝色三元络合物,络合物颜色的深浅与铝含量呈正比,比色测定可得出铝含量。
9、重金属锌的检测原理及采用标准
采用国家标准二硫腙比色法,试样经消化后,在合适的PH的条件下,锌离子与二硫腙形成紫红色络合物,络合物颜色的深浅与锌含量呈正比,比色测定可得出锌含量。
10、重金属锰的检测原理及采用标准
试样经消化后,待测液中的二价锰离子在酸性条件下,用适当强度的氧化剂氧化为紫红色的高锰酸根后进行比色,比色测定可得出锰含量。
11、重金属铜的检测原理及采用标准
不是。
镉标准液是一种浓度已知的溶液,其中含有已知浓度的镉离子。情况下,镉标准液是由纯化的镉化合物加入到水中制成的。镉标准液用于分析化学中的镉测定,例如环境监测、食品检测和医药行业等领域。
标准液是分析化学中常用的一种试剂,它是一种已知浓度的溶液,用于测定未知溶液中化学物质的浓度。在分析化学中,常常需要对未知样品进行定量分析,而标准液就是一种浓度已知的物质,可以用来确定未知样品中化学物质的浓度。标准液的制备需要严格的实验操作和精密的测量手段,以确保其浓度的准确性和稳定性。除了镉标准液,其他常见的标准液还有硫酸标准液、氢氧化钠标准液、氢氧化钾标准液等。
原理: 以铬黑T(EBT)为指示剂,铬黑T先与部分Mg2+络合为 Mg-EBT(酒红色)。当EDTA滴入时,EDTA与Ca2+、Mg2+ 络合,终点时EDTA夺取Mg-EBT中的Mg2+,将EBT置换出来, 溶液从酒红色转为纯蓝色。用EDTA标准溶液直接测定Ca2+和 Mg2+总量。 有害金属 ¾ 种类: 汞、镉、铬、铅、铜、锌、镍、钡、 钒、砷…… ¾ 测定方法: -分光光度法 -原子吸收法 - 原子发射 汞(日本水俣病) (一)冷原子吸收法 (二)冷原子荧光法 (三)双硫腙分光光度法 ¾双硫腙分光光度法 镉(痛痛病) (一)原子吸收分光光度法(AAS) (二)双硫腙分光光度法 (三)示波极谱及阳极溶出伏安法 ¾双硫腙分光光度法 检测范围: ~005mg/l 方法基于在强碱性介质中,镉离子与双硫腙生成红色螯合物, 用三氯甲烷萃取分离后,于518 nm处测其吸光度,与标准溶液 比较定量。
1 基本原理
化学检测仪器三部分组成。其中电解质溶液即电分析化学的分析对象。电化学传感器也称为电极,根据应用形式不同,又分为双电极,三电极,四电极体系。电极之间通过电路与检测仪器连接。检测时,电流通过连接电极的外电路从一个电极流到另一个电极,同时电极/溶液界面上发生电化学反应,伴随着反应的进行,电解质溶液中的正负离子会在电极之间沿电场方向发生移动,使得电荷能够在溶液和电极之间进行传递。
2.重金属检测方法
根据国际纯粹与应用化学联合会的分类方法,电化学分析一般可分为三大类。第一类为不涉及双电层和电极反应的方法,如电导分析、高频滴定分析等;第二类为涉及到双电层但不涉及电极反应的方法,如一些非法拉第测量方法等;第三类为同时涉及双电层和电极反应的方法,如极谱法、伏安法、电位分析法、库伦分析法等大多数电化学分析方法。电化学分析中可用于对重金属元素进行分析的方法主要有以下几种。
21电位分析法
电位分析法(PotentiometricMethod)是在保持电极之间不产生电流的情况下,通过测量电极之间的电位或电动势变化来对被测溶液中的物质成分以及含量进行测量的一种电化学分析方法。在电位分析法中应用较为广泛的是离子选择性电极。离子选择性电极(Ion-selective Electrode )是一类利用膜电势测定溶液中离子的活度或浓度的电化学传感器,当电极与待测离子接触时,敏感膜与溶液的异相界面上会产生与被测离子活度相关的膜电势,而活度又可在一定条件下转换为离子浓度。离子选择性电极具有使用方便、检测速度快、仪器结构简单、功耗低、操作方便等优点。宋文撮等采用离子选择性电极对海水中的铅、镉、铜进行了测定,实验表明传感器检测结果准确、性能可靠、成本低廉,适合在现场对重金属进行快速监测。刘新露等釆用离子载体掺杂PVC膜制作了一种重金属锌离子选择性电极并将其应用于对工业废水以及饲料中锌的检测, 结果表明该电极具有响应时间短、稳定性好等优点。目前离子选择性电极的主要缺点是检测灵敏度和准确度相对较低,实现痕量分析较为困难,由于其敏感膜易受溶液中其它离子的影响,因此在对实际样本进行测量时常存在多离子交叉影响问题,另外敏感膜的使用寿命较短也是制约离子选择性电极应用的一个重要问题。
22电导分析法
电导分析法(Method of Conductometric Analysis)是一种通过测量溶液的电导率来对被测物质进行定性和定量分析的方法。目前应用较多的为直接电导分析和电导滴定分析。电导分析具有检测速度快,仪器结构简单,操作方便等优点。但是电导分析一般只能测量溶液中所有离子的总体电导率,对于复杂溶液体系,很难对其中离子种类进行分辨,方法选择性较差。
23极谱法
极谱法(Polarography)是一种通过检测电化学反应过程中产生的极化电极的电流-电位(或电位-时间)关系来对溶液中被测物质成分和浓度进行分析的方法。极谱法一般采用能够表面更新的液态滴束电极作为工作电极。按照检测原理区分,极谱法可分为电位控制和电流控制极谱两大类。而按照工作电极扫描方式区分,极谱法可分为直流极谱法、交流极谱法、单扫描极谱法、方波极谱法、脉冲极谱法、半微分极谱法等多种。极谱法可用于测定铅、镉、媒、锡、镉等多种重金属离子,其灵敏度可达到l(r9mol/L,具有检测灵敏度高、分辨能力强等优点,因此被广泛应用在冶金、食品、环境分析等多个领域。
24溶出伏安法
伴随着极谱法的广泛应用,滴束电极在上个世纪成为电化学分析中应用最为广泛的工作电极。滴亲电极的主要优点是电极表面可周期性更新,并且较容易控制其工作表面积。但是未有剧毒且易挥发,使用后的废莱处理较为麻烦,另外当对检测溶液进行搅拌时,滴亲电极容易发生变形,从而影响其分析准确性。随着电分析化学技术的发展,固态电极的应用愈来愈广泛。Kolthaff和Laitinen等人首先将极谱法的电流-电位分析技术应用到固态电极上,从而提出了伏安分析方法。与极谱法相比,伏安法具有更高的检测灵敏度和更低的检测下限,同时由于采用固态电极,伏安法更加适合于进行现场在线分析。与极谱法类似,伏安法根据电势扫描方式不同又可分为线性伏安、阶梯波伏安、脉冲波伏安、正弦波伏安等多种。在进行重金属分析时,经常采用电解富集技术首先将被测离子从较稀释的溶液中浓缩富集到工作电极表面,随后采用伏安分析方法使电极表面富集的金属在很短的时间内重新溶出,从而获得比普通伏安法更为强烈的法拉第电流,这种方法称之为溶出伏安法。溶出伏安法按照电解富集原理的不同可分为阳极溶出伏安法、阴极溶出伏安法以及吸附溶出伏安法等。
(1)阴极溶出伏安法
阴极溶出伏安法(Cathodic Stripping Voltammetry)检测时需要经历电沉积、静置、溶出三个过程。溶液中的被测阴离子首先在正电位下发生氧化反应并与电极材料结合形成一层难溶膜。随后溶液经过一段静置时间后,电势扫描从正电势扫向负电势,使阴离子再次溶出而产生一个阴极溶出电流峰。由于难溶盐均具有各自的还原电势,因此通过分析峰电流-电势关系图即可获知溶液中阴离子的种类,而通过测量峰电流强度可获得阴离子浓度信息。Long等利用方波阴极溶出伏安法结合铋膜修饰热解石墨电极对水中的痕量进行了测量,检测限达到07 ng/L。Sophie等采用方波阴极溶出伏安法,结合铋膜修饰铜电极对工业废水、地表水以及自来水中的Ni2+进行了检测,结果表明该方法具有较高的检测灵敏度和选择性。
(2)吸附溶出伏安法
吸附溶出伏安法(Adsorptive Stripping Voltammetry)不采用电势沉积的方法富集被测物质,而是通过在电极表面修饰一些离子络合剂或配合剂的方式使得被测离子与之结合形成络合物,从而吸附富集在电极表面,随后采用电势扫描的方法使被测离子从电极表面溶出,分析获得的伏安曲线即可获知被测物质种类和浓度信息。吸附溶出伏安法是伴随着化学修饰电极的发展而逐渐产生的,其主要优点是检测灵敏度高、精确性好、仪器结构简单、操作方便等。狄晓威等釆用杯芳经衍生物对玻碳电极进行修饰,然后采用吸附溶出伏安法对混合水样中的微量铅进行了测定,其方法检出限达到陈士昆等利用槲皮素修饰碳糊电极结合吸附溶出伏安法对人血清中的铅进行了测定,结果表明,该方法检测灵敏度高、准确性好,传感器检出限为80moI/L吸附溶出伏安法主要缺点是受共存吸附物质干扰较大,在电极上容易发生竞争吸附作用,从而影响其检测灵敏性。另外由于吸附富集过程相比于电沉积过程速度较慢,因此吸附伏安法检测时间一般较长。
(3)阳极溶出伏安法
阳极溶出伏安法(Anodic stripping analysis, ASV)是电化学重金属检测最为常用的一种手段。与阴极溶出伏安法类似,阳极溶出伏安法也包括电沉积、静置、溶出三个阶段。其工作示意图如图1-2所示。分析时首先在工作电极上施加一个恒定负电势,使得溶液中的多种金属阳离子在电极表面发生还原反应从而沉积在工作电极表面。经过一段时间的富集后,电极表面被测物质浓度明显提高。经过一段溶液静置期后,仪器控制工作电极上的电势从负电位向正电位进行扫描,当电势到达某种金属的氧化电势时,该金属迅速氧化溶出形成一强烈的溶出电流峰,记录电流-电势曲线即可获得阳极溶出伏安图。由于不同的重金属有不同溶出电势,对伏安图中溶出电流峰位置进行分析即可获知溶液中所含重金属离子的种类,而溶出电流峰的大小与该金属离子的浓度成正比,据此可获得重金属离子浓度信息。
阳极溶出伏安法分析时电极上发生的电化学反应可以表示为:
阳极溶出伏安法具有检测灵敏度高、检测限低(重金属检测限可达到10-12mol/L)、分析速度快、可同时检测多种重金属元素(4-6种)等优点,同时其检测仪器结构简单、操作简便、易于实现自动化,因此被广泛应用于环境、食品、工业、医疗监控等多个领域。Christos等采用方波脉冲伏安法以秘金属膜为工作电极对怜肥中的铅和铺元素进行了分析,结果表明该方法检测灵敏度较好,检测限达到铅:05ng/L,镉:1 Mg/Lo Meucci等利用强酸和双氧水对食用鱼肉进行消解,以醋酸缓冲液为电解质,采用方波阳极溶出伏安法对样本中的铅、镊、莱、铜离子进行了检测,结果表明该方法具有较高的检测准确性,可实际应用于对有机物质中重金属元素的分析。国内王亚珍以乙炔黑/壳聚糖修饰玻碳电极为工作电极,采用阳极溶出伏安法对湖水中的痕量铅进行了检测,结果表明阳极溶出法具有很好的检测灵敏度,方法检测限达到mol/L。平建峰等采用厚膜碳楽电极结合方波脉冲阳极溶出伏安法对水溶液中的铅和镉离子进行了检测,并对溶出伏安法的工作参数进行了分析,结果表明,阳极溶出伏安法检测灵敏度高、准确性好,实际应用中溶液中的溶解氧以及共存离子对检测无明显影响。
HDXRF,DR6000紫外可见分光光度计。
1、HDXRF适用于各种土壤基质对于镉的测定。
2、DR6000紫外可见分光光度计可自动识别哈希条形码预制试剂,自动测定哈希镉离子不同位置的10个数值,去除异常值并取平均值,10秒左右即可显示最终的平均值。
过氧化氢在镉测定中有氧化剂的作用。镉是一种有毒的重金属,在环境监测和工业质量控制中需要进行检测。氢化物发生器法(Hydride generator method)是检测镉的一种方法之一。这种方法涉及到将样品中的金属镉转化为氢化物,然后通过气相色谱法对氢化物进行检测。在这个过程中,先将含有镉的样品和一定量的过量氢化钠性溶液一起加入氢氧化钠/碳酸氢钠缓冲溶液中,并通过过氧化氢的作用将镉离子氧化成Cd2+离子,然后再将Cd2+离子还原成Cd,并与氢化物生成CdH2,从而实现将Cd转化为CdH2的过程。整个过程中的重要化学反应如下所示:
Cd2+ + 2 NaOH → Cd(OH)2↓ + 2 Na+;
Cd(OH)2 + 2 NaOH + H2O2 → Cd(OH)4^2- + 2 Na+ + H2O;
Cd(OH)4^2- + Zn + HCl → Cd + ZnCl2 + 4 H2O
其中H2O2为过氧化氢,起到氧化镉的作用;Zn是加入到氢化物发生器中用于还原生成的Cd离子生成CdH2;HCl是用于将镉还原成Cd的酸性介质。
由于过氧化氢的氧化能力强,容易与其他还原剂反应,在氢化物发生器法中需要严格控制氢氧化钠、过氧化氢、 HCl 和 Zn的用量,以避免对还原分析结果的干扰。
欢迎分享,转载请注明来源:品搜搜测评网