(2)∵AB⊥AD,BC⊥CD
∴∠BAD=∠BCD=90°
即∠BAD+∠BCD=90°
∵AB=BC
∴将△ABE绕B旋转到AB和BC重合,得△ABE≌△BCG
∴∠BAE=∠BCG=90°,∠ABE=∠CBG
BE=BG,AE=GC
∴∠BCD+∠ACG=180°
∵∠EBF=60°,∠ABC=120°
∴∠ABE+∠CBF=∠ABC-∠EBF=60°
∴∠CBG+∠CBF=∠GBF=60°
∴∠EBF=∠GBF
∵BF=BF,BE=BG
∴△BEF≌△BGF(SAS)
∴EF=GF=GC+CF=AE+CF
(3)在AE上截取AG=CF
∵BC⊥CD,BA⊥AD
∴∠BAG=∠BCF=90°
∵AB=BC
∴△ABG≌△CBF(SAS)
∴BG=BF
∠ABG=∠CBF
∵∠ABC=120°
∴∠ABC=∠ABG+∠GBC=∠CBF+∠GBC=∠GBF=120°
∵∠EBF=60°
∴∠GBE=∠GBF-∠EBF=120°-60°=60°
∴∠GBF=∠EBF(∠FBE)
∵BE=BE,BG=BF
∴△BEG≌△BEF(SAS)
∴EF=EG=AE-AG=AE-CF
解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
∴△ABE≌CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,△BEF为等边三角形;
∴AE= BE,CF= BF;
∴AE+CF= BE+ BF=BE=EF;
图2成立,图3不成立.
证明图2.
延长DC至点K,使CK=AE,连接BK,
则△BAE≌△BCK,
∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,
∴∠FBC+∠ABE=60°,
∴∠FBC+∠KBC=60°,
∴∠KBF=∠FBE=60°,
∴△KBF≌△EBF,
∴KF=EF,
∴KC+CF=EF,
即AE+CF=EF.
图3不成立,AE、CF、EF的关系是AE-CF=EF.
(1)因为AB=BC,Lc=La,AE=CF 所以全等 因为LABC=120度,LMBN=60度 所以LABE=LCBF=30度 所以,AE=1/2BE,CF=1/2BF 因为BE=BF,LMBN=60度 所以BEF是等边三角形 所以AE=CF=1/2EF AE+CF=EF (2)图二延长DA到G,使AG=CF,可证三角形ABG全等于三角形CBF 再证三角形EBG全等于三角形EBF 得AG+AE=EF,AG=CF 得AE+CF=EF 图三在AD上取一点G,使AG=CF, 一样证
不妨设P在第一象限。 设M : (2cosa,√3sina) [此时sina>0] ,作PH垂直于X于H点
直线AP: y=√3sina/2(cosa+1) (x+2), 所以P 坐标为(4,3√3sina/(cosa+1))
tan∠PBH = [3√3sina/(cosa+1))]/2=3√3sina/2(cosa+1))>0 1&
tan∠MBA= √3sina/2(-cosa+1)>02&
1& 2&,有tan∠PBH tan∠MBA = 9/4
所以tan ∠MBN = tan(∠PBH +∠MBA)=[tan∠PBH+tan∠MBA]/(1-tan∠MBAtan∠PBH )<0
所以 ∠MBN 是钝角
图(2)结论不变(AE+CF=EF),思路为:根据题目已知条件可得,∠ABC=120°,所以当,
∠MBN=60°时,∠CBF+∠ABE=60°,易证AE+CF=EF。
图(3)结论为EF=AE-CF。思路为:当∠MBN=60°时,∠CBF必须小于30°,否则BM与AD在下方无交点。然后取特殊值,令∠CBF=15°或者0°,计算可得,EF=AE-CF。
答案如图所示,友情提示:点击可查看大图
答题不易,且回且珍惜
如有不懂请追问,若明白请及时采纳,祝愉快O(∩_∩)O~~~
欢迎分享,转载请注明来源:品搜搜测评网