数学王子高斯是个怎样的人。

数学王子高斯是个怎样的人。,第1张

数学王子高斯是一个不为生活艰辛,勇于创新,遇到困难不退缩的人。

约翰·卡尔·弗里德里希·高斯,生于布伦瑞克,卒于哥廷根。

德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。

享有“数学王子”的美誉。

高斯生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

扩展资料

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

-约翰·卡尔·弗里德里希·高斯

被誉为数学王子的数学家是高斯。

高斯生于不伦瑞克。1796年,高斯发现了正十七边形的尺规作图法。1807年高斯成为哥廷根大学教授和哥廷根天文台台长。1818年—1826年间,汉诺威公国的大地测量工作由高斯主导。1840年高斯与韦伯一同画出世界上第一张地球磁场图。

高斯被认为是世界上最重要的数学家之一,享有“数学王子”的美誉。

高斯的经历:

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。

于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的证明了正十七边形可以用尺规作图。

高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

  他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

  高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

  高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。

  1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。

  由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

高斯(Carl Friedrich Gauss,1777~1855)1777年4月30日出生于德国不伦瑞克的一个贫苦农民家庭。幼时家境贫苦,聪敏异常,受一贵族资助才进入学校受教育。1795~1798年在哥廷根大学学习,1799年获得博士学位,1807年开始任哥廷根大学数学教授和天文台台长,1833年和物理学家韦伯共同建立地磁观测台,组织磁学学会以联系全世界的地磁台站网。1855年2月23日在哥廷根逝世,终年78岁。

  

  数学神童

  高斯从小就是数学神童,具有惊人的记忆力和心算技巧。3岁已能纠正父亲计算上的错误,11岁发现二项式定理,19岁发明用圆规和直尺作正17边形的作图法。后来对超几何级数、复变函数、统计数学和椭圆函数论都有重大贡献。是一名当之无愧的数学天才。

  关于高斯的神思巧算有许多有趣的故事。

  大约距今200多年前的一天,在德国不伦瑞克的一所农村小学里,一位算术老师正在给学生们上课。这位从城里来的教师自命清高,他认为跑这么远的路来教一群乡下笨孩子真是大材小用。因此,感到一肚子委屈的他常常无缘无故地发脾气,动不动就训斥鞭打学生。孩子们见了他就像老鼠见了猫似地怕得不得了。

  这天,算术老师心情不好,拉长着脸走进教室,下命令似地对学生们说:“今天,你们给我算1加2,加3,加4,…一直加到100的和,谁算不好就不准回家吃饭。”说完,他像凶像恶煞似地瞪着眼睛看了孩子们一圈,然后坐到椅子上闭目养神。孩子们又怕又急,赶忙拿出石板算了起来:1+2=3,3+3=6,6+4=10,10+5=15,…唉,这道题可真难做,从1加到100这要做到什么时候才算完呀?

  正当大家在石板上擦了算,算了擦,忙个不停时,只见一个男孩子站了起来,手拿石板走到老师跟前小声说道:“老师,我算好了,答数是不是这个?”算术老师头都没抬,挥挥手说:“去!去!去!这么快就算好了,肯定是错的!”这孩子站着不动,他再把小石板往前一送,“老师,您看看吧,我想这个答数是对的。”算术老师正想发作一通,可是抬头一望却大吃一惊,那石板上端端正正地写着数字“5050”。这个答案他自己事先算过是对的,不过,他为了算这道题也花了好些时间,这9岁的孩子怎么这么快就算出来了,他有点惊奇地问道:“你是怎么算出来的?”

  “老师,我不是按1加2再加3的次序一个一个往上加的,我仔细看了一下算式,发现这个100个加数里,一头一尾两个数相加都是101,您看,1+100=101,2+99=101,3+98=101,…最后,50+51=101。这样,一共有50个101,用50乘101就是5050了。”

  “啊呀!我怎么就没有想到?”算术老师惊讶地对这个学生刮目相看。确实,他受到极大的震动,想不到乡下小孩里还有这么聪明的人。要知道这孩子应用的方法就是数学家们经过长期研究才找到的“等差级数求和”的方法呀。从此,这位老师像换了个人似地,认真备课,认真上课,对学生的态度也大为改进了,尤其是对这个聪明的孩子,他更是热情帮助,精心指点,把他引上了热爱数学的道路。

这个聪明的孩子就是高斯,1777年4月30日他出生在德国不伦瑞克一个贫苦农民的家里。他的祖父是农民,父亲是打短工的,后来在小杂货铺当伙计,母亲是石匠的女儿。可以这样说,高斯家祖祖辈辈都没什么文化。但是,高斯却十分喜爱读书学习,并从小就表现出特别的数学才能。有一次,他父亲忙着替老板年终结算小杂货铺几个帮工的工资,算得满头大汗才得出总数是多少。突然,4岁的高斯小声向他指出总数算错了,他吃了一惊,赶忙仔细再全部核对一遍,发现自己确实算错了。真奇怪,谁也没有教过小高斯的算术,他是从哪儿学来的呢?高斯后来回忆起童年的事说,他在学会说话之前已经学会计算了。的确,这位数学神童是有点数学天才的。

  1788年,小学毕业的高斯由于古典文学成绩优异,而跳级被录取为文科中学的二年级学生,后来又升到哲学班去学习。在18世纪时,中学的哲学班有点像我们今天的尖子班,那里都是成绩优秀的学生。不过,父母却为高斯能不能进入大学深造而发愁,因为他们太穷了,哪里交得起昂贵的大学学费。的确,高斯家很穷,为了节省灯油,晚饭过后爸爸就要他上床睡觉,并把油灯熄掉,为了继续进行他喜爱的读书学习,聪明的高斯用一个大萝卜挖去芯,做了一盏小油灯,一个人躲到阁楼上,在微弱的灯光下看书学习,直到深夜。

  懂得十几种外语

  1791年的一天,14岁的高斯在放学回家的路上,边走边看书,不注意闯入了不伦瑞克公爵费迪南的庄园。在那个年代,德国还没有统一,全国由几十个小邦统治着。而公爵就是一邦之主,闯入公爵的庄园那还了得费迪南亲自盘问这个农村孩子,发现他是无意之中闯入的。而在盘问过程中,这孩子对答如流的才干,使他认定这个高斯是一个神童。于是,公爵决定造就高斯,于1792年资助他进入著名的卡罗琳学院学习语言和数学,以便为进入大学作准备。在那里,高斯学会了好几国语言,并精心研读了英国的牛顿、法国的拉格朗日、瑞士的欧勒这些大名鼎鼎的数学家的外文原著。

  1795年,在费迪南公爵的资助下,已打下良好基础的高斯进入举世闻名的哥廷根大学学习。这所德国的最高学府学风严谨,藏书丰富,人才荟萃,年轻有为的高斯在那里受到系统而严格的科学教育,很快就脱颖而出,作出了名扬世界的一系列重大贡献。

  把“数学王子”的桂冠戴在了他的头上。值得一提的是,当高斯进大学不久,1796年3月,19岁的高斯用圆规和直尺作出了正17边形,解决了两千多年来一直没有解决的一个世界难题。为了纪念他的这一重大成就,于1855年高斯去世后哥廷根大学按他的遗嘱建造了一座十分独特的纪念碑。它的底部是一个正17边形的台座,台座上面是高斯的雕像。

  高斯生平还喜欢文学与语言学,懂得十几种外语。1807年,才30岁的高斯就当上了当时德国最高学府哥廷根大学的数学和天文学正教授,还担任了该校天文台台长,取得如此辉煌的成就,别人称他是“天才”,可是高斯却回答道:“假如别人和我一样深刻和持久地思考数学,他们也会做出同样的发现。”

  1799 年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为代数学基本定理。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

  在 1801 年,高斯二十四岁时出版了《算学研究》,这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍同余 的概念。二次互逆定理也在其中。

  研究天文学

  二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

  当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801 年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为谷神星。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi 只能观察到它9 度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

  高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是最小平方法。

  1802 年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas 的天文学家Olbers 请他当哥廷根天文台主任,他没有立刻答应,到了1807 年才前往哥廷根就任。

  1809 年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817 年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812 年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

  1820 到1830 年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827 年他发表了《曲面的一般研究》,涵盖一部分现在大学念的微分几何。

  研究磁场

  在1830 到1840 年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

  1833 年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

  1835 年高斯在天文台里设立磁观测站,并且组织磁协会发表研究结果,引起世界广大地区对地磁作研究和测量。高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839 年才发表。

  1840 年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841 年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

  美国的着名数学家贝尔在他着的《数学工作者》一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800 年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

  在1855 年二月23 日清晨,高斯在他的睡梦中安详的去世了。

高斯求和的故事指的是年仅10岁的高斯解出来数学教师布特纳出一道难题,布纳特要求学生将1到100以内的所有整数进行相加,本来布纳特是为了为难学生的,没想到高斯很快算出了答案。高斯用来快速解出答案的办法就被后人称为高斯求和。

高斯求和的公式

高斯求和的公式为1+2+3+4+……+n=(n+1)n

/2,指的是当多个连续的整数进行相加时,它们的和就等于这些数字的首项和末项之和乘以项数在除以2的商。

高斯的介绍

高斯是出生于布伦瑞克的德国数学家,诗人将其誉为“数学王子”。高斯最出名的故事就是“高斯求和”,完成了数学老师布置的难题,最快解出了连续自然整数的和。高斯在数学史上也有不朽成就,他发现了质数分布定理和最小二乘法,还推导复活节日期的计算公式,对于数学的发展有杰出的贡献。

高斯

被誉为“数学王子”,出版了数论名著《算术探究》的数学家是高斯。

高斯生于不伦瑞克。1796年,高斯发现了正十七边形的尺规作图法。1807年高斯成为哥廷根大学教授和哥廷根天文台台长。1818年—1826年间,汉诺威公国的大地测量工作由高斯主导。1840年高斯与韦伯一同画出世界上第一张地球磁场图。

高斯的成就介绍:

高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。

高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

李宗盛有一句话我非常赞同:任何一个领域站在顶峰的,靠的都是天赋,你不需要找,他就站在那里,闪闪发光。“数学王子”高斯就是这样的一个人。数学界有这样一句话叫,这个世界上数学界分为两类:其他数学家与高斯。今天我们就来聊聊高斯“神”一般的人生。

高斯出身于一户贫穷人家,仿佛是“数学之神”的阿基米德的转世一般,高斯自小就显示出强大的数学天赋,他的父亲因为贫穷负债累累,高斯三岁的时候,当时高斯的父亲是一位工头,在核算工人们的周薪,高斯看了一眼账本,就已经能够帮父亲纠正账目的错误。

而在8岁的时候,这个到如今已经家喻户晓的故事充分显示了高斯强大的数学天分,高斯7岁的时候首次进入到了学习数学的班级,在这里他遇到了自己人生的第二个伯乐与老师,班级的数学老师布特纳,布特纳有一天布置了一道题目,从1加到100等于多少。

这样的问题对于如今7岁的孩童而言也已然有一定困难。布特纳对学生其实并不友好,出这样的问题也只是想消磨学生的时间,谁知道,高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案,而高斯则列出了自己的计算方法:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。

布特纳第一次看见这样的计算方法,当他隐隐感觉到,高斯未来会是一个成就不可限量的数学天才。他特意跑到汉堡去购买最好的数学教材送给高斯,布特纳虽然并没有教给高斯什么东西,却真正带高斯走上了数学的道路。而这种算法如今也被命名为“高斯算法”。

高斯第一个伯乐和老师其实是他的母亲和舅舅,他的母亲虽然只是一个贫穷石匠的女儿,却智慧开明、目光长远,她坚信高斯未来会有一番不一样的成就,而不像自己的丈夫一样希望高斯获得一份安稳的工作就好。而高斯的舅舅弗利德里希和姐姐一样富有智慧,为人热情而又聪明能干。

他发现姐姐的儿子聪明伶利,因此他将自己的一部分精力投注在高斯的身上,启迪高斯的智慧开阔高斯的思想,并且经常鼓励高斯走上学者的道路,正因为有舅舅在,给予高斯以支撑,才没有让高斯走上泥瓦匠的道路。高斯一直非常感谢舅舅的付出,认为舅舅是一位“天才“。

高斯的人生可谓一路顺遂,虽然出身贫穷却一直拥有伯乐,让他的人生可以走的非常平坦,可以自由幸福地用自己的思想去为数学的王国添砖加瓦。而在他几十年后,未被他理睬过的伽罗瓦却因为缺少伯乐,在21岁的年纪就抱憾而终,让数学王国少了一颗璀璨的明星。

高斯11岁的时候,来到了文科学校,因为自己的聪慧,他的老师和他的母亲将高斯举荐给了布伦兹维克公爵卡尔·威廉·斐迪南,他又遇到了人生的第三位伯乐,公爵岁高斯一生的贵人,在他几十年的人生中,公爵都无私地帮助着高斯,正是因为有公爵的存在,才让高斯的数学研究可以无后顾之忧,按照自己的理想,勤奋地学习和开始进行创造性的研究。。如果没有他,高斯的数学之路将会走的非常坎坷。

布伦兹维克公爵卡尔·威廉·斐迪南

公爵不仅后来让高斯在自己的卡罗琳学院继续学习,还资助他考入了哥廷根大学。一直到高斯获得博士学位,而后来高斯没有工作的时候,公爵依然无私地支援着高斯,让高斯可以拒绝圣彼得堡提供的教授职位,安心从事数学研究。公爵对高斯无私到了什么样的程度呢?

不仅博士论文的印刷费是他出的,还送他高斯一栋房子,还帮高斯印刷了许多他自己的研究成果,还负担了高斯大部分的生活费用。。。简直比对亲儿子还亲。。。高斯也特别感谢公爵,他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

嗯,布伦兹维克公爵卡尔·威廉·斐迪南就因为和高斯沾上了光,就成功留名历史,而且还是研究高斯绕不开的名字,这钱花的真值的。

你会发现,每一个天才,无论是牛顿还是欧拉亦或是高斯,这些在历史上如神一般的人物,无论出身如何,最终都可以遇到伯乐,让自己的人生璀璨生光。只要是天才,无论你身处在什么样的环境,别人总会发现你,燃烧自己或者提供一个平台,让你的光芒可以让世界所有人发现,即使是生无伯乐的伽罗瓦,也在死后遇见了自己难以等来的伯乐。

**中的高斯形象

当然了,公爵这样无私是因为高斯的确非常出色,让公爵可以相信这样的人是万中无一的天才。在高斯18岁的时候,他就自己发现了质数分布定理和最小二乘法,根据这个发现,他自己创造了一套测量数据处理方法,根据这个新方法,他得到了一个具有概率性质的测量结果,并且把这个测量结果画成了曲线,这种曲线函数分布后来被后人称作为高斯分布图,也被叫做标准正态分布。

高斯19岁的时候就发现了正十七边形的尺规作图法,

当年欧几里得提出了尺规作图,可是还遗留了许多问题,比如正多边形的尺规作图,难倒了2000多年来的许多数学家,高斯在大学二年级时就得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件解决了两千年来悬而未决的难题,他也是世界上第一个成功用代数方法解决几何难题的数学家。才19岁而已,各位可以想想自己19岁的时候在做什么?仅凭这一项高斯就可以青史留名。

但这只是高斯开挂人生的开始,他在19岁那年又证明了二次互反律,二次互反律在数论的发展史中处于中心地位。就连欧拉都没有给出严格的证明,高斯不仅给出了第一个严格的证明,证明了二次互反律,而且后来又给出了7种证明方式。提出一种已经可以算得上是大数学家了,提出了8种,让其他数学家怎么活!

而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。

不过在他29岁的时候,公爵在抵抗拿破仑的法军中牺牲,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。没有了资助,就只能自己找工作了,高斯想找工作的想法让德俄两国掀起了人才争夺战。

**中的高斯形象

因为高斯19岁解决了正十七边形的尺规作图法就已经声名鹊起了,彼得堡科学院不断暗示他,自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。而德国一看不行呀,这么牛的人才,怎么能被你俄国人抢去了呢?

彼得堡科学院

德国著名学者洪堡立马联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。再加上公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。高斯就留在了哥廷根。

影视中的洪堡和高斯

这一闹直接让高斯的地位和名气又上了一个档次,俄国都来抢的超级人才,怎么能够不对他好呢?等又走了怎么办!所以高斯一直到去世都过着优渥的生活,他一生也几乎没有离开过哥廷根,毕竟,给了这么丰厚的报酬,要钱给钱要权给全,哪里好意思走。

但是哥廷根这代价花的值得啊,这为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件,自此之后,哥廷根一直都是学术的中心,不仅是数学,物理也是,物理学家索末菲领导的哥廷根学派一直是20世纪初物理的中心之一。

当然了,高斯最传奇的人生经历之一,就是推测出了谷神星的位置,当时一名叫丢提斯的中学老师,发现一组数列每一项与当时已知的六大行星(即水星、金星、地球、火星、木星、土星)到太阳的距离比例(地球到太阳的距离定为1个单位)有着一定的联系。

后来赫歇尔根据这个数列发现了天王星,证明了这组数列的正确性,可是还有一颗火星和木星轨道间的小行星没有被发现。当时一名牧师皮亚齐已经观测到,当是后来又不见了。高斯对这个事情非常感兴趣,高斯经过艰苦的运算,以其卓越的数学才能创立了一种崭新的行星轨道计算理论。他根据皮亚齐的观测资料,利用这种方法,只用了一个小时就算出了谷神星的轨道形状,并指出它将于何时出现在哪一片天空里。

皮亚齐

1801年12月31日夜,德国天文爱好者奥伯斯,在高斯预言的时间里,用望远镜对准了这片天空。不出所料,谷神星再一次奇迹般地出现了。这个崭新的行星轨道计算理论也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。高斯后来还用他计算出了智神星的天体运行轨迹。

奥伯斯根据高斯的方法观测到了谷神星和智神星

在以前的欧洲,几何都是以欧几里得几何学派为宗,但是高斯却认为这欧几里得几何学派已经没有办法解决一些问题了,他后来和其他数学家又提出了非欧几何。非欧几何影响着现代自然科学、现代数学和数学哲学的发展。

除此之外,被称为“数学王子”的高斯在其他领域也都有着卓越的成就,也是一个全民开花的人。比如他自从用数学方法计算出了天体的运行轨迹,就出了一本书叫《天体运行理论》,时至今日,高斯当年的研究仍然是天文学计算的基石。

1833年,高斯还和物理学教授威廉韦伯发明了第一台电磁电报机。在哥廷根大学,他们俩一直在磁学领域不断合作。他们建造了第一台电报机,以连接天文台和物理研究所,这个系统能够每分钟发送8个单词。后来,国际单位制中磁通量的单位“韦伯”就是以威廉·韦伯的名字命名的。

韦伯和高斯

高斯还发明了简易版GPS系统——日光反射镜,这是一种大大改善长距离土地测量的仪器。日光反射镜用一面镜子把太阳光反射到遥远的地方,可以达到几百千米远,这能够为测量员标记位置。可惜,这种仪器需要在天气晴朗的情况下才有很好的效果。到了20世纪80年代,GPS技术取代了它。

可以说,高斯他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

以他名字“高斯”命名的成果达110个,属数学家中之最,比如说高斯分布(正态分布),高斯模糊,高斯积分,高斯整数,高斯消元,高斯曲率,高斯滤波器,高斯引力常数。可以说大物里有高斯、高数里也有高斯、几何里也有高斯、…你闭上眼睛,在理工科(技术类)书籍里随便挑一本书。里面一定能找到Gaussian这么个名字…你随便拆一个app看代码。,一般一定有不止一个公式(或者包里的公式)和高斯有关。

你好不容易学一个平面设计,平面设计里还有高斯模糊。。。可以说,高斯无处不在。

高斯之墓

这还是高斯并没有把自己所有研究成果全部发表出来的情况下,高斯是一个非常谨慎的人,估计是怕打脸,他对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

欧几何的的开山祖师有三人,分别是高斯、

洛巴切夫斯基,波尔约。其中波尔约的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小波尔约还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老波尔约把儿子的成果寄给老同学高斯,想不到高斯却回信道:我无法夸赞他,因为夸赞他就等于夸奖我自己。早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

波尔约

快速傅立叶变换FFT的基本思路在1965年之后开始为人所知。但后来发现,实际上发现这思路的两位作者只是重新发明了高斯在1805年就已经提出的算法。可想而知,高斯领先了同时代的人160年。

数学家雅克比跟高斯差不多生活在同一个时代,但是他要比高斯小近三十岁。雅克比本人在椭圆函数领域上做了很多工作,他曾经拜访过几次高斯并向高斯陈述了自己在椭圆函数方面的最新进展,但是每次高斯都能从书桌里拿出一堆三十多年前的手稿向雅克比证明“你刚才说的东西我早就发现了”

经历过几次这样的事情后,雅克比写信给他的兄长,在信中他是这么说的:“像高斯这样的巨人,如果他不是把晚年的精力放在天文学上,今天的数学界恐怕完全会是另外一种模样了。“

高斯和阿基米德、牛顿、欧拉并列为世界四大数学家,和欧拉一样,欧拉的许多成果毁于大火,而高斯的成果则散落于与朋友的书信以及笔记之间,没有发表。如果这两位大师都可以把自己的所有成果公布于众,那么数学的发展至少要提前一个世界。

高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰……人类智力领域的几乎所有褒奖之词,可以说对于高斯都不过分。而爱因斯坦曾评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

贝尔曾经这样评论高斯:在高斯死后,人们才知道他早就预见一些十九世纪的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。

最后说一句:高斯真牛!

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/3487917.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-29
下一篇2024-02-29

随机推荐

  • 精华露和乳液的区别是什么,分别如何使用

    精华露用于皮肤的修护和保养  一般用于睡前洁面后轻拍于面部至吸收 其功能和效果长期使用才会有效果 如雅诗兰黛和ONLY就有两款 但是如果年龄还不大 不推荐使用 容易使皮肤更容易老化 对产品长生依赖。乳液分为妆前乳和保湿乳等等 就是皮肤的日常

    2024-04-15
    66000
  • 有必要买天气丹皇后套盒么

    有必要。1、天气丹皇后套盒有很强的抗氧化效果,能从根本上解决肌肤的水油平衡问题,能使肌肤保持一整天的水油平衡。2、天气丹皇后套盒深层补水,提拉紧致,再生细胞,高效修复,水,精华,乳液,眼霜,面霜全包括,还送一堆赠品。

    2024-04-15
    61100
  • 精华哪个牌子好用?

    精华现在几乎每个人都离不开,因为效果好有效含量高,对肌肤的改善比较明显,所以大家现在都开始用精华了,以前精华比较贵,价格都在几百元,现在因为竞争激烈,价格便宜了不少,所以就出现了很多物美价廉的精华,价格不太贵效果却非常好,我们就给大家列举一

    2024-04-15
    61600
  • 伊思白蜗牛水乳怎么样

    1号水乳它相对而言比较清爽,适合那些偏油性的肌肤人群,外在是以白瓶作为呈现的,2号水乳它是比较滋润型的,那些肌肤比较缺水、比较干燥的可能更加适合这一款,它的外形以**作为呈现。具体一些来说,1号的水它质地是比较稠的,流动性挺不错,有一种比较

    2024-04-15
    35800
  • 雅诺秀植物精华祛纹露祛除纹身管用吗?是不是骗人的

    不会啊!雅诺秀植物精华去纹身还是蛮神奇的。原本和用过的人差不多,一个月后、纹身已经淡去了。。。。可能因为心急吧!有点不耐烦了············还是在朋友的鼓励下,坚持用完了。。。现在比起那些激光之类的,效果是我见到过最好的一个了纹身是

    2024-04-15
    38600
  • 依思蒙沙家具排名

    2023十大樟木家具品牌排名2017十大樟木家具品牌排名是什么?华丰实木家具暂时是排名第一噢,是中国的知名品牌。然而,详细内容下面一起来看看,希望这篇文章对大家有所帮助。2017十大樟木家具品牌排名2017十大樟木家具品牌排名一:华丰家具华

    2024-04-15
    38600
  • 美容店一个套盒的利润

    美容店一个套盒的利润大约在70%左右,这是根据相关专业人士透露得出的结论。当然,具体利润还会受到多种因素的影响,例如套盒的成本、销售价格、市场需求等等。一般来说,美容店会根据市场需求和自身定位,选择合适的套盒产品,并制定合理的销售价格。在销

    2024-04-15
    37700

发表评论

登录后才能评论
保存