1980年后电子通信网的发展史?(80年代至今)

1980年后电子通信网的发展史?(80年代至今),第1张

从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。

这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。

从80年代中期开始。这是数字移动通信系统发展和成熟时期。

以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。

与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。

傅立叶变换最早是在19世纪由法国的数学家JB Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知

梁bridge指的是为道路跨越天然或人工障碍物而修建的建筑物。

桥梁一般讲由五大部件和五小部件组成,五大部件是指桥梁承受汽车或其他车辆运输荷载的桥跨上部结构与下部结构,是桥梁结构安全的保证包括(1)桥跨结构(或称桥孔结构上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础五小部件是指直接与桥梁服务功能有关的部件,过去称为桥面构造包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明

一、桥梁的分类:

按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥。

按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。

按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四中基本体系,此外还有组合体系桥

按行车道位置分为上承式桥、中承式桥、下承式桥

按使用年限可分为永久性桥、半永久性桥、临时桥

按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥

桥梁分类 多孔跨径总长L(米) 单孔跨径L0(米)

特大桥 L≥500 L0≥100

大桥 L≥100 L0≥40

中桥 30<L<100 20≤L0<40

小桥 8≤L≤30 5<L0<20

涵洞 L<8 L0<5

二、各类桥梁的基本特点:

梁式桥 包括简支板梁桥,悬臂梁桥,连续梁桥其中简支板梁桥跨越能力最小,一般一跨在8-20m连续梁桥国内最大跨径在200m以下,国外已达240m

拱桥 在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m亦正是这个推力,修建拱桥时需要良好的地质条件

刚架桥 有T形刚架桥和连续刚构桥,T形刚架桥主要缺点是桥面伸缩缝较多,不利于高速行车连续刚构主梁连续无缝,行车平顺施工时无体系转换跨径我国最大已达270m(虎门大桥辅航道桥)

缆索承重桥(斜拉桥和悬索桥) 是建造跨度非常大的桥梁最好的设计道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。斜拉桥已建成的主跨可达890m,悬索桥可达1991m

组合体系桥 有梁拱组合体系,如系杆拱,桁架拱,多跨拱梁结构等梁刚架组合体系,如T形刚构桥等

桁梁式桥:有坚固的横梁,横梁的每一端都有支撑。最早的桥梁就是根据这种构想建成的。他们不过是横跨在河流两岸之间的树干或石块。现代的桁梁式桥,通常是以钢铁或混凝土制成的长型中空桁架为横梁。这使桥梁轻而坚固。利用这种方法建造的桥梁叫做箱式梁桥。

悬臂桥:桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。

拱桥:借拱形的桥身向桥两端的地面推压而承受主跨度的应力。现代的拱桥通常采用轻巧、开敞式的结构。

吊桥:是建造跨度非常大的桥梁最好的设计。道路或铁路桥面靠钢缆吊在半空,钢缆牢牢地悬挂在桥塔之间。较古老的吊桥有的使用铁链,有的甚至使用绳索而不是用钢缆。

拉索桥:有系到桥柱的钢缆。钢缆支撑桥面的重量,并将重量转移到桥柱上,使桥柱承受巨大的压力。

玻璃桥:纯玻璃制成的一种桥梁。(平板桥)

廊桥:加建亭廊的桥,称为亭桥或廊桥,可供游人遮阳避雨,又增加桥的形体变化。

三、中国桥梁的历史

历史和现状上看,绝大多数桥梁均架设在水面上,只有阁道桥和现代城市的行人天桥和行车天桥,是架设于高楼崇阁之间或通衢大道之上。

从对天生桥的利用到人工造桥,这是一个历史的飞跃过程。从简单的独木桥到今天的钢铁大桥;从单一的梁桥到浮桥、索桥、拱桥、园林桥、栈道桥、纤道桥等;建桥的材料从以木料为主,到以石料为主,再到以钢铁和钢筋混凝土为主,这是一个非常漫长的发展过程。然而,中国桥梁建筑都取得了惊人的成就。

著名的科学技术史学家、英国剑桥大学李约瑟博士( J Needham )在《中国科学技术史》中说,中国桥梁「在宋代有一个惊人的发展,造了一系列巨大的板梁桥」。到了当代中国,所建造的武汉、南京长江大桥等,更受到世人称赞。可见,中国的桥梁,经过了一个从童年、少年、青年到壮年的发展过程,愈趋成熟。中国在发展桥梁方面于 14 世纪以前处于领先地位,今天,她依然是世界上举足轻重的桥梁大国。

四、桥梁的分类:

1按跨径分类

桥梁按跨径分类是一种行业管理的手段,并不反映桥梁工程设计和施工的复杂性。以下是我国公路工程技术标准(JTJ001-97)规定的按跨径划分桥梁的方法。

特大桥

桥梁总长L≥500m,计算跨径L0≥100m。

大桥

桥梁总长100m≤L<500m, 计算跨径40m≤L0<100m。

中桥

桥梁总长30m<L<100m,计算跨径20m≤L0<40m。

小桥

桥梁总长8m≤L≤30m,计算跨径5m≤L0<20m。

桥梁分类 多孔跨径总长L(m) 单孔跨径(L0)

特大桥: L≥500m L0≥100m

大桥 :100m≤L<500m 40m≤L0<100m

中桥 :30m<L<100m 20m≤L0<40m

小桥 :8m≤L≤30m 5m≤L0<20m

由於时代的进步,赋予了“桥梁”新的词义,泛指为机构与机构之间、地区与地区之间、国家与国家之间,沟通有无、建立合作关系、促进友好交流等诸如此类工作的人的统称。这种人从事的工作和职业也被统称为“桥梁工作”。

五、桥梁的发展史:

桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。

(1)古代桥梁

人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和浮桥,如公元前1134年左右,西周在渭水架有浮桥。古巴比伦王国在公元前1800年建造了多跨的木桥,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。

古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。

石桥 石桥的主要形式是石拱桥。据考证,中国早在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。现在尚存的赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。

罗马时代,欧洲建造拱桥较多,如公元前200~公元200年间在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为244米。公元98年西班牙建造了阿尔桥,高达52米。此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一,图1[列米尼桥示意图]为罗马时代建造的列米尼桥示意图。

罗马帝国灭亡后数百年,欧洲桥梁建筑进展不大。11世纪以后,尖拱技术由中东和埃及传到欧洲,欧洲开始出现尖拱桥,如法国在公元1178~1188年建成的阿维尼翁桥,为20孔跨径达34米尖拱桥。英国在公元1176~1209年建成的泰晤士河桥为19孔跨径约 7米尖拱桥。西班牙在13世纪建了不少拱桥,如托莱多的圣玛丁桥。拱桥除圆拱、割圆拱外,还有椭圆拱和坦拱。公元1542~1632年法国建造的皮埃尔桥为七孔不等跨椭圆拱,最大跨径约32米。当时椭圆拱曾盛行一时。1567~1569在佛罗伦萨的圣特里尼塔建了三跨坦拱桥,其矢高同跨度比为1∶7。11~17世纪建造的桥,有的在桥面两侧设商店,如意大利威尼斯的里亚尔托桥。

石梁桥是石桥的又一形式。中国陕西省西安附近的灞桥原为石梁桥,建于汉代,距今已有2000多年。公元11~12世纪南宋泉州地区先后建造了几十座较大型石梁桥,其中有洛阳桥、安平桥。安平桥(五里桥)原长2500米,362孔,现长2070米,332孔。英国达特穆尔现存的石板桥,有的已有2000多年。

木桥 早期木桥多为梁桥,如秦代在渭水上建的渭桥,即为多跨梁式桥。木梁桥跨径不大,伸臂木桥可以加大跨径,图2[ 木悬臂桥示意图]为木悬臂桥的示意图。中国 3世纪在甘肃安西与新疆吐鲁番交界处建有伸臂木桥,“长一百五十步”。公元405~418年在甘肃临夏附近河宽达40丈处建悬臂木桥,桥高达50丈。八字撑木桥(图3[ 八字撑木桥示意图])和拱式撑架木桥亦可以加大跨径。16世纪意大利的巴萨诺桥为八字撑木桥。

木拱桥(图4[木拱桥示意图])出现较早,公元104年在匈牙利多瑙河建成的特拉杨木拱桥,共有21孔,每孔跨径为36米。中国在河南开封修建的虹桥(图5[ 虹桥示意图]),净跨约为20米,亦为木拱桥,建于公元1032年。日本在岩国锦川河修建的锦带桥为五孔木拱桥,建于公元300年左右,是中国僧戴曼公独立禅师帮助修建的。

中国西南地区有用竹篾缆造的竹索桥。著名的竹索桥是四川灌县珠浦桥,桥为8孔,最大跨径约60米,总长330余米,建于宋代以前。

古代桥梁基础,在罗马时代开始采用围堰法施工,即打木板桩成围堰,抽水后在其中修筑桥梁基础和桥墩。1209年建成的英国泰晤士河拱桥,其基础就是用围堰法修筑,但是,那时只能用人工打桩和抽水,基础较浅。中国11世纪初,著名的洛阳桥在桥址江中先遍抛石块,其上养殖牡蛎二三年后胶固而成筏形基础,是一个创举。

(2)近代桥梁

18世纪铁的生产和铸造,为桥梁提供了新的建造材料。但铸铁抗冲击性能差,抗拉性能也低,易断裂,并非良好的造桥材料。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料。钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥梁的部件在厂内组装创造了条件,使钢材应用日益广泛。

18世纪初,发明了用石灰、粘土、赤铁矿混合煅烧而成的水泥。19世纪50年代,开始采用在混凝土中放置钢筋以弥补水泥抗拉性能差的缺点。此后,于19世纪70年代建成了钢筋混凝土桥。

近代桥梁建造,促进了桥梁科学理论的兴起和发展。1857年由圣沃南在前人对拱的理论、静力学和材料力学研究的基础上,提出了较完整的梁理论和扭转理论。这个时期连续梁和悬臂梁的理论也建立起来。桥梁桁架分析(如华伦桁架和豪氏桁架的分析方法)也得到解决。19世纪70年代后经德国人K库尔曼、英国人WJM兰金和JC麦克斯韦等人的努力,结构力学获得很大的发展,能够对桥梁各构件在荷载作用下发生的应力进行分析。这些理论的发展,推动了桁架、连续梁和悬臂梁的发展。19世纪末,弹性拱理论已较完善,促进了拱桥发展。20世纪20年代土力学的兴起,推动了桥梁基础的理论研究。

近代桥梁按建桥材料划分,除木桥、石桥外,还有铁桥、钢桥、钢筋混凝土桥。

木桥 16世纪前已有木桁架。1750年在瑞士建成拱和桁架组合的木桥多座,如赖谢瑙桥,跨径为73米。在18世纪中叶至19世纪中叶,美国建造了不少木桥,如1785年在佛蒙特州贝洛兹福尔斯的康涅狄格河建造的第一座木桁架桥,桥共二跨,各长55米;1812年在费城斯库尔基尔河建造的拱和桁架组合木桥,跨径达104米。桁架桥省掉拱和斜撑构,简化了结构,因而被广泛应用。由于桁架理论的发展,各种形式桁架木桥相继出现,如普拉特型、豪氏型、汤氏型等(图6[ 桁架桥])。由于木结构桥用铁件量很多,不如全用铁经济,因此,19世纪后期木桥逐渐为钢铁桥所代替。

铁桥 包括铸铁桥和锻铁桥。铸铁性脆,宜于受压,不宜受拉,适宜作拱桥建造材料。世界上第一座铸铁桥是英国科尔布鲁克代尔厂所造的塞文河桥,建于1779年,为半圆拱,由五片拱肋组成,跨径307米。锻铁抗拉性能较铸铁好,19世纪中叶跨径大于60~70米的公路桥都采用锻铁链吊桥。铁路因吊桥刚度不足而采用桁桥,如1845~1850年英国建造布列坦尼亚双线铁路桥,为箱型锻铁梁桥。19世纪中以后,相继建立起梁的定理和结构分析理论,推动了桁架桥的发展,并出现多种形式的桁梁。但那时对桥梁抗风的认识不足,桥梁一般没有采取防风措施。1879年12月大风吹倒才建成18个月的阳斯的泰湾铁路锻铁桥,就是由于桥梁没有设置横向连续抗风构。

中国于1705年修建了四川大渡河泸定铁链吊桥。桥长100米,宽28米,至今仍在使用。欧洲第一座铁链吊桥是英国的蒂斯河桥,建于1741年,跨径20米,宽063米。1820~1826年,英国在威尔士北部梅奈海峡修建一座中孔长 177米用锻铁眼杆的吊桥。这座桥由于缺乏加劲梁或抗风构,于1940年重建。世界上第一座不用铁链而用铁索建造的吊桥,是瑞士的弗里堡桥,建于1830~1834年、桥的跨径为 233米。这座桥用2000根铁丝就地放线,悬在塔上,锚固于深18米的锚碇坑中。

1855年,美国建成尼亚加拉瀑布公路铁路两用桥这座桥是采用锻铁索和加劲梁的吊桥,跨径为250米。1869~1883年,美国建成纽约布鲁克林吊桥,跨度为283+486+283米。这些桥的建造,提供了用加劲桁来减弱震动的经验。此后,美国建造的长跨吊桥,均用加劲梁来增大刚度,如1937年建成的旧金山金门桥(主孔长为1280米,边孔为344米,塔高为228米),以及同年建成的旧金山奥克兰海湾桥(主孔长为704米,边孔为354米,塔高为152米),都是采用加劲梁的吊桥。

1940年,美国建成的华盛顿州塔科玛海峡桥,桥的主跨为853米,边孔为335米,加劲梁高为274米,桥宽为119米。这座桥于同年11月7日,在风速仅为 675公里/小时的情况下,中孔及边孔便相继被风吹垮。这一事件,促使人们研究空气动力学同桥梁稳定性的关系。

钢桥 美国密苏里州圣路易市密西西比河的伊兹桥,建于1867~1874年,是早期建造的公路铁路两用无铰钢桁拱桥,跨径为153+158+153米。这座桥架设时采用悬臂安装的新工艺,拱肋从墩两侧悬出,由墩上临时木排架的吊索拉住,逐节拼接,最后在跨中将两半拱连接。基础用气压沉箱下沉33米到岩石层。气压沉箱因没有安全措施,发生119起严重沉箱病,14人死亡。19世纪末弹性拱理论已逐步完善,促进了20世纪20~30年代修建较大跨钢拱桥,较著名的有:纽约的岳门桥,建成于1917年,跨径305米;纽约贝永桥,建成于1931年,跨径504米;澳大利亚悉尼港桥(见彩图[澳大利亚悉尼港桥,是公路、铁路两用桥]),建成于1932年,跨径503米。3座桥均为双铰钢桁拱。

19世纪中期出现了根据力学设计的悬臂梁。英国人根据中国西藏木悬臂桥式,提出锚跨、悬臂和悬跨三部分的组合设想,并于1882~1890年在英国爱丁堡福斯河口建造了铁路悬臂梁桥。这座桥共有6个悬臂,悬臂长为206米,悬跨长为107米,主跨长为519米(图7[福斯悬臂梁桥示意图])。20世纪初期,悬臂梁桥曾风行一时,如1901~1909年美国建造的纽约昆斯堡桥,是一座中间锚跨为190米、悬臂为 150和180米、无悬跨、由铰联结悬臂、主跨为300米和360米的悬臂梁桥。1900~1917年建造的加拿大魁北克桥也是悬臂钢桥。1933年建成的丹麦小海峡桥为五孔悬臂梁公路铁路两用桥,跨径为13750+165+200+165+1375米。

1896年比利时工程师菲伦代尔发明了空腹桁架桥。比利时曾经造了几座铆接和电焊的空腹桁架桥。

钢筋混凝土桥 1875~1877年,法国园艺家莫尼埃建造了一座人行钢筋混凝土桥,跨径16米,宽4米。1890年,德国不莱梅工业展览会上展出了一座跨径40米的人行钢筋混凝土拱桥。1898年,修建了沙泰尔罗钢筋混凝土拱桥。这座桥是三铰拱,跨径52米。图8[ ]为三铰拱、桥示意图。1905年,瑞士建成塔瓦纳萨桥,跨径51米,是一座箱形三铰拱桥,矢高55米。1928年,英国在贝里克的罗亚尔特威德建成 4孔钢筋混凝土拱桥,最大跨径为110米。1934年,瑞典建成跨径为181米、矢高为262米的特拉贝里拱桥;1943年又建成跨径为264米、矢高近40米的桑德拱桥(图9[瑞典桑德拱桥示意图])。

桥梁基础施工,在18世纪开始应用井筒,英国在修威斯敏斯特拱桥时,木沉井浮运到桥址后,先用石料装载将其下沉,而后修基础及墩。1851年,英国在肯特郡的罗切斯特处修建梅德韦桥时,首次采用压缩空气沉箱。1855~1859年,在康沃尔郡的萨尔塔什修建罗亚尔艾伯特桥时,采用直径11米的锻铁筒,在筒下设压缩空气沉箱。1867年,美国建造伊兹河桥,也用压缩空气沉箱修建基础。压缩空气沉箱法施工,工人在压缩空气条件下工作,若工作时间长,或从压缩气箱中未经减压室骤然出来,或减压过快,易引起沉箱病。

1845年以后,蒸汽打桩机开始用于桥梁基础施工。

(3)现代桥梁

20世纪30年代,预应力混凝土和高强度钢材相继出现,材料塑性理论和极限理论的研究,桥梁振动的研究和空气动力学的研究,以及土力学的研究等获得了重大进展。从而,为节约桥梁建筑材料,减轻桥重,预计基础下沉深度和确定其承载力提供了科学的依据。现代桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥和钢桥。

预应力钢筋混凝土桥 1928年,法国弗雷西内工程师经过20年的研究,用高强钢丝和混凝土制成预应力钢筋混凝土。这种材料,克服了钢筋混凝土易产生裂纹的缺点,使桥梁可以用悬臂安装法、顶推法施工。随着高强钢丝和高强混凝土的不断发展,预应力钢筋混凝土桥的结构不断改进,跨度不断提高。

预应力钢筋混凝土桥有简支梁桥、连续梁桥、悬臂梁桥、拱桥、桁架桥、刚架桥、斜拉桥等桥型。简支梁桥的跨径多在50米以下。连续梁桥如1966年建成的法国奥莱隆桥,是一座预应力混凝土连续梁高架桥,共有26孔,每孔跨径为79米。1982年建成的美国休斯敦船槽桥,是一座中跨229米的预应力混凝土连续梁高架桥,用平衡悬臂法施工。悬臂梁桥如1964年联邦德国在柯布伦茨建成的本多夫桥,其主跨为209米;1976年建成的日本滨名桥,主跨240米;中国1980年完工的重庆长江桥,主跨174米(见彩图[重庆长江桥,是公路预应力混凝土 T型刚构桥])。桁架桥如1960年建成的联邦德国芒法尔河谷桥,跨径为 90+108+90米,是世界上第一座预应力混凝土桁架桥。1966年苏联建成一座预应力混凝土桁架式连续桥,跨径为106+3×166+106米,用浮运法施工刚架桥如1957年建成的法国图卢兹的圣米歇尔桥,是一座160米、5~65米的预应力混凝土刚架桥;1974年建成的法国博诺姆桥,主跨径为18625米,是目前最大跨径预应力混凝土刚架桥(图10[博诺姆桥示意图])。预应力钢筋混凝土吊桥是将预应力梁中的预应力钢丝索作为悬索,并同加劲梁构成自锚式体系,1963年建成的比利时根特的梅勒尔贝克桥和玛丽亚凯克桥,主跨径分别为 56米和100米,就是预应力钢筋混凝土吊桥。斜拉桥如1962年建成委内瑞拉的马拉开波湖桥。这座桥为5孔235米连续梁,由悬在 A形塔的预应力斜拉索将悬臂梁吊起。斜拉桥的梁是悬在索形成的多弹性支承上,能减少梁高,且能提高桥的抗风和抗扭转震动性能,并可利用拉索安装主梁,有利于跨越大河,因而应用广泛。预应力混凝土斜拉桥如1971年利比亚建造的瓦迪库夫桥,主跨径282米;1978年美国建造的华盛顿州哥伦比亚河帕斯科-肯纳威克桥,主跨299米;1977年法国建造的塞纳河布罗东纳桥,主跨320米。中国已建成十多座预应力混凝土斜拉桥,其中1982年建成的山东济南黄河桥主跨为220米(见彩图[济南黄河公路桥,是连续预应力混凝土斜拉桥,于1982年建成通][车])。

钢筋混凝土桥 二次世界大战以后,世界上修建了多座较大跨径的钢筋混凝土拱桥,如1963年通车的葡萄牙亚拉达拱桥,跨径为270米,矢高50米;1964年完工的澳大利亚悉尼港的格莱兹维尔桥,跨径305米。

中国1964年创造钢筋混凝土双曲拱桥。桥由拱肋和拱波组成,纵向和横向均有曲度,横向也用拱波形式(图11[双曲拱结构示意图])。拱肋和拱波分段预制,因此可用轻型吊装设施安装。这样,在缺乏重型运输工具和重型吊装机具下,也可以修建较大跨径拱桥。第一座试验双曲拱桥,建于中国江苏无锡,跨径为9米。此后,1972年建成湖南长沙湘江大桥,是一座16孔双曲拱桥,大孔跨径为60米,小孔跨径为50米,总长1250米。

钢筋混凝土桁架拱桥(图12[桁架拱桥示意图])是拱和桁架组合而成的结构,其用料少,重量轻,施工简易。

钢桥 二次世界大战后,随着强度高、韧性好、抗疲劳和耐腐蚀性能好的钢材的出现,以及用焊接平钢板和用角钢、板钢材等加劲所形成轻而高强的正交异性板桥面的出现,高强度螺栓的应用等,钢桥有很大发展。

钢板梁和箱形钢梁同混凝土相结合的桥型,以及把正交异性板桥面同箱形钢梁相结合的桥型,在大、中跨径的桥梁上广泛运用。1951年联邦德国建成的杜塞尔多夫至诺伊斯桥,是一座正交异性板桥面箱形梁,跨径206米。1957年联邦德国建成的杜塞尔多夫北桥,是座6孔72米钢板梁结交梁桥。1957年南斯拉夫建成的贝尔格莱德的萨瓦河桥,是一座钢板梁桥,跨径为75+261+75米,为倒U形梁。1973年法国建成的马蒂格斜腿刚架桥,主跨为300米。1972年意大利建成的斯法拉沙桥,跨径达376米,是目前世界上跨径最大的钢斜腿刚架桥。1966年美国完工的俄勒冈州阿斯托里亚桥,是一座连续钢桁架桥,跨径达376米。1966年日本建成的大门桥,是一座连续钢桁架桥,跨径达300米。1968年中国建成的南京长江桥,是一座公路铁路两用的连续钢桁架桥,正桥为128+9×160+128米,全桥长6公里(见彩图[南京长江桥,是中国目前规模最大的桥梁])。1972年日本建成的大阪港的港大桥为悬臂梁钢桥,桥长980米,由235米锚孔和162米悬臂、186米悬孔所组成1964年美国建成的纽约维拉扎诺吊桥,主孔1298米,吊塔高210米。1966年英国建成的塞文吊桥,主孔985米。这座桥根据风洞试验,首次采用梭形正交异性板箱形加劲梁,梁高只有305米。1980年英国完工的恒比尔吊桥,主跨为1410米,也用梭形正交异性板箱形加劲梁,梁高只有3米。

20世纪60年代以后,钢斜拉桥发展起来。第一座钢斜拉桥是瑞典建成的斯特伦松德海峡桥,建于1956年,跨径为 747+1826+747米。这座桥的斜拉索在塔左右各两根,由钢筋混凝土板和焊接钢板梁组合作为纵梁1959年联邦德国建成的科隆钢斜拉桥,主跨为334米;1971年英国建成的厄斯金钢斜拉桥,主跨305米;1975年法国建成的圣纳泽尔桥,主跨404米。这座桥的拉索采用密束布置,使节间长度减少,梁高减低,梁高仅338米。目前通过对钢斜拉桥抗风抗震性能的改进,其跨径正在逐渐增大。

钢桥的基础多用大直径桩或薄壁井筒建造。

………………

约翰·冯·诺依曼。

约翰·冯·诺依曼,著名匈牙利裔美籍数学家、计算机科学家、物理学家和化学家。1903年12月28日生于匈牙利布达佩斯的一个犹太人家庭。冯·诺依曼从小就显示出数学和记忆方面的天才,从孩提时代起,冯诺依曼就有过目不忘的天赋。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/3993036.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-05
下一篇2024-04-05

随机推荐

  • 兔子冬天怕冷吗

    怕冷。兔子身上虽然覆盖着浓密的毛发,但是在过冬的时候也要做好防寒保暖的工作,为兔兔准备一个温暖厚实的兔窝,如果还是夏天时候一个单独的兔笼,那这是万万不行的。如果天气很冷,可以给兔兔准备一些干草,或者是温暖厚实的棉垫。当然干草一定要定期更换,

    2024-04-15
    1044100
  • 一鹿有你口红安全吗

    安全。一路有你口红成分主要是蜡质、油脂、染料、香精、少量防腐剂和少量重金属。所以一鹿有你口红是安全的,属于国货品牌贝玲美。其中油脂、蜡质、香精,这些成分可以食用,对人体是无害的,能够被人体吸收的。jlig口红怎么样解说如下这款礼盒里面的每一

    2024-04-15
    62200
  • 妮维雅美版和德版区别

    地域差德版妮维雅蓝罐与美版妮维雅蓝罐大PK德版的气味比较婉约! 上手照:左边是德版妮维雅蓝罐;右边是美版妮维雅蓝罐。 从照片上就可以看出德版的更润一些,美版的更厚实一些。 从丢姐手感上来说,德版的比美版的延展性更好。 推开之后的效果是一样的

    2024-04-15
    55600
  • 天气丹水云系列好用吗

    好用。天气丹套盒里的乳液对于皮肤的维稳效果相当不错,天气丹乳液的质地不厚重,使用起来不会让肌肤产生负担感,保湿力度也很高,适合全肤质所有人群使用。天气丹套盒中还有一盒面霜,天气丹面霜质地比较绵密,可以牢牢锁住之前所使用护肤品中的营养成分。天

    2024-04-15
    48100
  • 乔伊思属于什么档次

    中低档次。乔伊思女装价格上属于中低档次那一档,据网友反馈,其质量也属于中低档次,性价比比较一般。乔伊思女装归属上海桃乐丝服饰有限公司所有,专业的韩版女装生产、销售公司,乔伊思品牌韩版女装实行一种实打实的办法,将乔伊思的品牌女装全部进驻华东地

    2024-04-15
    39400
  • 草舍名院套盒怎么样

    草舍名院套盒是一款护肤品,其口碑和性价比都比较好。但是,具体使用效果会因人而异,因为每个人的肤质和需求不同。以下是草舍名院套盒的特点:1 温和无刺激:草舍名院套盒的成分比较温和,不含刺激性物质,适合各种肤质使用。2 保湿效果好:套盒中的护肤

    2024-04-15
    56100
  • 怎样在网上找到靠谱的化妆品OEM代加工厂家?

    随着互联网的发展,我们已经能够做到"秀才不出门,全知天下事"了。以前大家获取资讯很多情况都需要亲自出马,现在只需要在键盘上动动手指就了如指掌了。对于需要寻找化妆品OEM的品牌方来说,只要充分利用好网络,同样也能更快地找到

    2024-04-15
    53000

发表评论

登录后才能评论
保存