自然数公理化,最早于1881年,由美国数学家皮尔斯提出,定义如下:
1是最小的数;
x+y,当x=1时,是下一大于y的数,其它情况,是下一个大于x⁻+y的数;
x×y,当x=1时,就是y,其它情况,为y+x⁻y;
其中,x⁻是上一个小于x的数。
因为,减法和除法分别是加法和乘法的逆运算(而且对自然数并不封闭),因此只需要公理化加法和乘法就可以了。
按照皮尔斯公理的定义,1+1是x=1的情况,它的值是下一个大于y=1的数,即,2。
之后,1888年德国数学家戴德金,给出了另外一套公理:
设非空N,给定N中的一个元素e∈N,已经N上的映射S:N→N,若满足:
e不是S的值,即:e∉ranS;
S是单射,即:∀n,m∈N,(S(n)=S(m))⇒(n=m);
归纳原理,即,对于任意子集A⊂N,如果e∈N并且若n∈A则S(n)∈A那么A就是N,即:∀A⊂N,(1∈N)∧((1∈N)⇒(S(n)∈A))⇒(A=N),
则称三元组(N,e,S)是一个自然数系统,N称为自然数集,e称为初始元,S称为后继。
戴德金,从更本质的层次,对自然数进行了公理化,可以通过这套公理,定义自然数的加法和乘法运算从而和皮尔斯公理等价。
但是,这个公理系统表示的有些复杂(当时数理逻辑语言才刚刚建立),于是,没有引人们注意。
注:这里⊂是包含于,真包含于记为⊊。
紧接着第二年,即,1889年,意大利数学家皮亚诺,独立于戴德金,发布了皮亚诺公理:
0是自然数;
任意一个自然数n的后继数n⁺任然是自然数;
0不是任何自然数的后继数;
两个自然数相等当且仅当它们的后继数相等;
对于自然数集的子集A,如果0∈N并且若n∈A则n⁺∈A那么A就是自然数集。
很明显,皮亚诺公理就是戴德金公理的简化版本,因此也称为戴德金-皮亚诺公理。
注:最早,皮亚诺用1作为最小的自然数,并且将等价关系作为公理的一部分,上面是后来的改进版本。
用皮亚诺公理,定义自然数加法如下:
x+0=x
x+y⁺=(x+y)⁺
乘法如下:
x0=0
xy⁺=x+xy
利用上面的加法定义,证明题主的问题:
1+1=1+0⁺=(1+0)⁺=1⁺=2
以上不管是那个公理系统都是抽象的,在不同的数学领域有不同的实例,以皮亚诺公理为例有:
在最古老的算术下:
0=0
x⁺=x+1
在集合论下:
0=Ø
x⁺=x∪{x}
于是有:
1={0},2={0,1},3={0,1,2},
丘奇数:
0=λsλzz
x⁺=λxλsλzxs(sz)
于是有:
1=λsλzsz,2=λsλzs(sz),3=λsλzs(s(sz))
在范畴论下:
设C是一个范畴,1是C的终止对象,于是定义范畴US₁(C)如下,
US₁(C)的对象是一个三元组(X,0ᵪ,Sᵪ),其中X是C的对象,0ᵪ:1→X和Sᵪ:X→X都是C的态射;
US₁(C)的态射f:(X,0ᵪ,Sᵪ)→(Y,0ᵧ,Sᵧ)就是C态射f:X→Y,并满足:f0ᵪ=0ᵧ并且fSᵪ=Sᵧf,
如果US₁(C)中可以找到一个初始对象(N,0,S),即,对于任意对象(X,0ᵪ,Sᵪ),有唯一的态射u:(N,0,S)→(X,0ᵪ,Sᵪ),则称C满足皮亚诺公理。US₁(C)中每个三元组对象都是一个皮亚诺公理系统。
可以证明这些实例都满足皮亚诺公理定义的条件,因此这些实例都是良定义的。
(由于本人数学水平有限,出错在所难免,欢迎题主和各位老师批评指正!)
二、1+1=2?哥德巴赫猜想
1、很多人不明白1+1=2为什么要被证明,这不是常识吗?
然而这个问题背后大有来头,看似简单却又奇妙无比。我来回答一下为什么1+1=2需要被证明,以及为什么这么难以被证明。
2、什么是“1+1=2”
所谓“1+1=2”,其实指的是哥德巴赫猜想,被称为世界近代三大数学难题之一。
1742年,哥德巴赫突发奇想:“任一大于2的整数都可写成三个质数之和。”然而哥德巴赫自己却无法证明,于是就给大名鼎鼎的欧拉写了一封信,提出了他的猜想,希望欧拉帮助他解决这个问题。
然而伟大的欧拉面对这个奇妙猜想,一直到去世,也没有办法给出合理的证明。有意思的是,至今几百年过去了,这道连小学生都能理解的题,却难倒了天下所有数学家。
3、一个激动人心的事实
目前最接近完美证明1+1=2的人我国的著名数学家陈景润先生,1966年,陈景润证明了哥德巴赫猜想中的“1+2”理论。这个结论被称为“陈氏定理”,将哥德巴赫猜想的证明大大地推进了一步。
注:在这之前,其他数学家曾从“1+n”逐渐证明到了“1+5”、“1+4”、“1+3”,这也叫筛选法。
而陈景润的“1+2”与“1+1”仅差一步之遥。只要证明了“1+1”理论,哥德巴赫猜想便可以划上一个完美的句号了。
然而,实际上我们距离这个问题的完美证明还有很远的距离。
4、为什么难以被证明
很多人不理解为什么哥德巴赫猜想这么伟大,其实原因就在于这个猜想几乎可以为所有大于2的整数定义。就相当于告诉世人,看,所有的整数都是由质数构成的。
而这,就好像在没有显微镜的时候,突然有人提出原子是构成所有物质的最小要素一样。
证明哥德巴赫猜想的难度,和要在没有显微镜的情况下证明原子是构成万物的难度一样。
5、写在最后
在这个问题下面看到很多不友善的回答,希望题主不用理会,追求真理是一件伟大的事。不过好心提醒一句题主,不要试图自己证明1+1=2,就算你宣称自己证明成功了,多半还是难免被冠以民科的称呼。
6、这个问题涉及到皮亚诺公理。
五个皮亚诺公理分别是:
(1)0是自然数;
(2)每一个自然数a,都有一个确定的后继数a',且a’也是自然数;
(3)0不是任何自然数的后继数;
(4)不同自然数有不同的后继数,如果a、b的后继数都是自然数c,那么a=b;
(5)如果集合S是自然数集合N的子集,且满足两个条件:Ι、0属于S;ΙΙ、如果n属于S,那么n的后继数也属于S;那么S就是自然数集,这条公理也叫做归纳公理。
这个公理的第五条描述的比较恶心。鉴于你这个问题我们就讨论第二条就可以
第二条公理中,假设自然数1的后继数为x',也就是说1+1=x'。然后我们就定义了x'叫做2,也就是说“1+1=2”;当然,你硬要定义为0也行,但是你就需要另外找一个名称,来代替原来的0,不然就和公理(3)矛盾了。
所以1+1=2这是人为定义,无需证明,也无法推翻。如果1+1不等于2,毫不客气的说,当前数学界百分之99以上的定理将全部崩塌,数学就要重新开始。
总结:不过,1+1还有一个含义,是哥德巴赫猜想的究极体形态。这个猜想目前还没有人可以证明,目前最好的证明是陈景润的1+2,所以哥德巴赫猜想1+1目前还无解,我当然也提供不了任何解决的思路。
如您还有其他对特的见解,欢迎留言一起讨论!
这个问题在不同的层面上有不同的答案。在数学上,这是自然数公理的内容之一。问这个问题之前你应该想过自然数是怎么定义的。粗略地说,二的定义就是一加一。三的定义是二加一,但是三等于一加二是要证明的。直到现在,还有人考虑能不能用更基本的东西定义自然数。这些人包括数学家、逻辑学家、哲学家等。对于这些更基本的东西,我不知道,你可以问问相关领域的专家。
看你的要求是啥了,正常情况下是等于3的
但是陈景润为了证明哥德巴赫猜想研究了一辈子“1+2=?”的问题!
http://baikebaiducom/view/2125htm
陈景润
(2004-02-06)
福建福州人,1953年毕业于厦门大学数学系,中国科学院数学研究所研究员。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。50年代对高斯圆内格点、球内格点、塔里问题与华林问题作了重要改进。60年代以来对筛法及其有关重要问题作了深入研究,1966年5月证明了命题“1+2”,将200多年来人们未能解决的哥德巴赫猜想的证明大大推进了一步。这一结果被国际上誉为“陈氏定理”;其后又对此作了改进,将最小素数从原有的80推进到16,深受称赞。
陈景润是世界著名解析数论学家之一,他在50年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改进。60年代后,他又对筛法及其有关重要问题,进行广泛深入的研究。
1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(AWeil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”
陈景润于1978年和1982年两次收到国际数学家大会请他作45分钟报告的邀请。这是中国人的自豪和骄傲。他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前。
1+2=3
一加二=三
望楼主采纳,
祝楼主学习进步、新年快乐,
有任何不懂可追问
欢迎分享,转载请注明来源:品搜搜测评网