如何消除多重共线性

如何消除多重共线性,第1张

问题一:如何消除多重共线性 用逐步回归分析可以消除的

ridge regression也可以

我替别人做这类的数据分析蛮多的

问题二:消除多重共线性的几种方法之间的比较 主成分法和岭回归所估计的参数,都已经不是无偏的估计,主成分分析法作为多元统计分析的一种常用方法在处理多变量问题时具有其一定的优越性,其降维的优势是明显的,主成分回归方法对于一般的多重共线性问题还是适用的,尤其是对共线性较强的变量之间。

岭回归估计是通过最小二乘法的改进允许回归系数的有偏估计量存在而补救多重共线性的方法,采用它可以通过允许小的误差而换取高于无偏估计量的精度, 因此它接近真实值的可能性较大。灵活运用岭回归法, 可以对分析各变量之间的作用和关系带来独特而有效的帮助。

问题三:spss如何消除多重共线性 操作步骤:

1、先打开回归的对话框: yse--regression--linear,打开线性回归对话框;

2、将自变量因变量都放到各自的位置,然后点击statistic;

3、在该对话框中,有一个多重共线性诊断的选项,勾选他,如图所示,点击continue按钮,返回主对话框;

4、点击ok按钮,开始输出诊断结果;

5、特征根(Eigenvalue):多个维度特征根约为0证明存在多重共线性;条件指数(Condition Index):大于10时提示我们可能存在多重共线性,相关系数矩阵,找到数值接近1的相关,这也提示出可能存在多重共线性。

问题四:怎么在不减少变量下消除多重共线性 基本上,只有一个办法:增大样本量。 多重共线性是一个小样本条件下比较棘手的问题,我们知道在线性回归的情况下,系数估计的方差为: 多重共线性反映在最后一项上,也就是说是的系数的方差变大了。

问题五:利用spss消除多重共线性具体怎么操作 用逐步回归分析可以消除的

ridge regression也可以

我替别人做这类的数据分析蛮多的

问题六:回归分析中出现的多重共线性问题是什么,如何处理 对多重共线性的两点认识:

①在实际中,多重共线性是一个程度问题而不是有无的问题,有意义的区分不在于有和无,而在于多重共线性的程度。②多重共线性是针对固定的解释变量而言,是一种样本的特征,而非总体的特征。

消除多重共线性的方法:

1增加样本容量

2利用先验信息改变

3删除不必要的解释变量:参数的约束形式

4其它方法:逐步回归法,岭回归(ridge regression),主成分分析(principal ponents )

这些方法spss都可以做的,你在数据分析的子菜单下可以找到相应的做法。

删除不必要的方法的时候,最好使用一下逐步回归法,这样比较科学一点。

主成分分析的方法使用比较简单科学,本人介意用该方法。

问题七:数据中心化为什么能够消除多重共线性 从相关系数的公式可以看出,变量各自标准化后的两两相关系数是跟原始的一样。怎么可能消除共线性呢,光纤光缆等最好用达标的,我们工程布线喜欢使用菲尼特的。数据中心不仅是一个网络概念,还是一个服务概念,它构成了网络基础资源的一部分,提供了一种高端的数据传输服务和高速接入服务。数据中心提供给用户综合全面的解决方案,为 上网、企业上网、企业IT管理提供专业服务,使得企业和个人能够迅速借助网络开展业务,把精力集中在其核心业务策划和网站建设上,而减少IT方面的后顾之忧。IDC改变了以往互联网的运作和经营模式,使得参加互联网的每一方都能专注其特长。

问题八:回归分析中出现的多重共线性问题是什么,如何处理 多重共线性的典型表现是线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。主要产生原因是经济变量相关的共同趋势,滞后变量的引入,样本资料的限制。

判断是否存在多重共线性的方法有特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。条件索引列第3第4列大于10,可以说明存在比较严重的共线性。比例方差内存在接近1的数,可以说明存在较严重的共线性。

问题九:如何用spss消除数据间的多重共线性 把数据标准化就行了,一般都是转化成Z分数

问题十:如何用eviews消除多重共线性 在group窗口中,点击view-correlation,会得到相关系数矩阵,一般来说,大于08或09即有严重的多重共线性,需调整,一般是用逐步回归法剔除一些变量。当然,临界值不是固定的,你可以调低或调高。

神经网络测评方法

人工神经网络(简称神经网络)是一种通过模拟人脑神经细胞的结构和功能来进行信息处理的技术 由大量简单的神经元广泛互联而形成 具有存储和应用经验知识的自然特性。神经网络有多种模型 在进行质量竞争力指数测评时,我们主要采用误差反向传播前馈网络(简称BP网络) 该网络是各类神经网络模型中应用最为广泛的代表性网络。

典型的BP网络含有一个或多个隐含层 一般采用误差反向传播算法训练网络的权值和偏差。

复合线性矩阵测评方法

复合线性矩阵法是一种多因素评价方法,比较适用于企业质量竞争力测评和诊断分析。该方法通过选择对企业运营质量具有重要影响的关键因素与职能部门 分别构建部门一质量意识矩阵和部门一质量因素矩阵 形成复合矩阵(参见下表) 评估各质量因素在具体部门的实施情况 并将其实际运营效果与其最大潜能相比较 最终形成质量竞争力指数。

卓越绩效准则评价方法

2005年1月1日.国家标准《卓越绩效评价准则》正式实施。该准则主要从领导、战略、顾客与市场、资源、过程管理、测量分析与改进 经营结果等七个方面规定了卓越绩效的评价要求.可以全面地诊断、评价组织经营管理的成熟度。卓越绩效评价准则的七种要素结构关系如下图:从图中可以看出:卓越绩效评价中所考虑到的七方面因素,已经涵盖了质量竞争力测评中涉及的要素,并增加了领导、资源,以及测量、分析与改进等因素。并且,卓越绩效评价考虑到了相对竞争对手和业内标杆的比较,同时注重对评价因素的差异化分析,评价过程中各要素的评分赋值体现了因素的权重分配。因而,卓越绩效评价结果可以在一定程度上为企业质量竞争力水平提供一种近似的估计。

主成分分析法

在进行指数化测评时,较多的测评指标在带来有关信息的同时,也给数据分析带来了一定困难,同时,这些数据之间还可能存在着较强的相关性,如果直接进行分析,可能因多重共线性的存在而无法得出正确结论。此时,我们可以选用主成分分析和因子分析等统计方法,对原始测评数据进行降维处理,将众多观测指标浓缩为少数关键变量,有效提取原始数据的内在结构,并解决多重共线性等问题。

原则上,如果有n个变量,则最多可以提取出n个主成分,但如果将它们全部提取出来就失去了该方法简化数据的实际意义,多数情况下前2~3个主成分就已经包含了90%以上的原始信息,其它主成分则可忽略不计。

层次分析法

在进行质量竞争力指数化测评时,有时限于客观条件约束而缺少量化的数据,需要借助专家知识和经验进行从定性到定量的转化处理,而层次分析法恰恰为此类问题的决策提供了一种简洁而实用的测评方法。该方法最早由美国运筹学家、匹茨堡大学教授TLSaaty于上世纪70年代提出。其特点是在对复杂决策问题的本质,影响因素及其内在关系等进行深入分析基础上,利用较少的定量信息使决策思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法,尤其适用于对决策结果难以直接准确计量的场合。

层次分析法的基本原理是:根据具有递阶结构的目标、子目标(准则)、约束条件、部门等来评价方案,采用两两比较的方法确定判断矩阵,然后把判断矩阵的最大特征根相对应的特征向量的分量作为相应的系数,最后综合给出各方案的权重(优先程度)。它是将复杂的问题分解成为若干层次,在各个层次上再逐步分解,将人为主观判断和定性分析用数量形式表达、转换和处理后综合分析。

  1、费里希(RFrish)是经济计量学的主要开拓者和奠基人。

  2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。

  3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,

为经济计量分析工作提供专门的指导理论和分析方法。

  4、时序数据即时间序列数据。时间序列数据是同一统计指标按时间顺序记录的数据列。

  5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。

  6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。

  7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。在模型中一个方程的被解释变量可以是其它方程的解释变量。被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。

  8、滞后变量与前定变量。有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。

  9、控制变量与政策变量。由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。

  10、经济参数分为:外生参数和内生参数。外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。内生参数是依据样本观测值,运用统计方法估计得到的参数。如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。

  11、用数学模型描述经济系统应当遵循以下两条基本原则:

  第一、以理论分析作先导;第二模型规模大小要适度。

  12、联立方程模型中的方程一般划分为:

  随机方程和非随机方程。随机方程是根据经济机能或经济行为构造的经济函数关系式。在随机方程中,被解释变量被认为是服从某种概率分布的随机变量,且假设解释变量是非随机变量。非随机方程是根据经济学理论和政策、法规的规定而构造的反应映某些经济变量关系得恒等式。

  13、所谓经济计量分析工作是指依据经济理论分析,运用经济计量模型方法,研究现实经济系统的结构、水平、提供经济预测情报和评价经济政策等的经济研究和分析工作。

  14、经济计量分析工作的程序包括四部分:1、设定模型;2、估计参数;3、检验模型;4、应用模型。

  15、在社会经济现象中,变量之间的关系可分为两类:函数关系和相关关系。函数关系是指如果给定解释变量X的值,被解释变量Y的值就唯一地确定了,Y与X的关系就是函数关系,即Y=f(X)。相关关系是指如果给定了解释变量X的值,被解释变量Y的值不是唯一确定,Y与X的关系就是相关关系。

  16、回归分析与相关关系的联系与区别:

  回归分析研究一个变量(被解释变量)对于一个或多个其它变量(解释变量)的依存关系,其目的在于根据解释变量的数值来估计或预测被解释变量的总体均值。相关分析研究变量之间相互关联的程度,用相关系数来表示,相关系数又分为简单相关系数和复相关系数;前者表示两个变量之间的相互关联程度,后者描述三个或三个以上变量之间的相关程度。回归分析和相关分析二者是有联系的,它们都是研究相关关系的方法。但二者之间也有区别:相关分析关心的是变量之间的相关程度,但并不能给出变量之间的因果关系;而回归分析则要通过建立回归方程来估计解释变量与被解释变量之间的因果关系。此外,在回归分析中,定义被解释变量为随机变量,解释变量为非随机变量;而在相关分析中,把所考察的变量都看作是随机变量。

  17、总体回归模型是根据总体的全部资料建立的回归模型,又称为理论模型。样本回归模型是根据样本资料建立的回归模型。在绝大多数情形下,得到总体的全部资料是不可能的。

  18、估计回归参数的方法主要有最小二乘法,极大似然估计法和矩估计法,其中最简单的是普通最小二乘法。这种方法要求回归模型满足以下假设:

  1随机误差μi的均值为零,即:E(μi)=0;

  2所有随机误差μi都有相同的方差,即:Var(μi)=E(μi—E(μi))2=E(μi2)=σ2;

  3任意两个随机误差μi和μj(i≠j)互不相关,也即μi和μj的协方差为零:

  E(μi—E(μj))(μi—E(μj))=E(μiμj)=0

  4解释变量X是确定变量,与随机误差μi不相关。

  5对回归参数进行统计检验时,还须假定μi服从正态分布。

  满足上述假定的线性回归模型称为经典线性回归模型。

  19、求解一元线性回归模型参数的应用公式:

  nΣXY—ΣXΣY ΣYΣX2—ΣXΣXY — —

  β1=—————————— β0=————————————=Y —β1X

  nΣX2—(ΣX)2 nΣX2—(ΣX)2

  其中X、Y均为样本值。

  20、利用普通最小二乘法求的样本回归直线具有以下特点:

  (1)样本回归直线必然通过点X的均值和点Y的均值;

  (2)预测值Y的平均值与实际值Y的平均值相等;

  (3)残差ei均值为零;

  (4)残差ei与解释变量X不相关。

  21、普通最小乘估计量的特性:

  (1)无偏性:E(β0)= β0,E(β1)= β1由不同样本得到的β0和β1可能大于或小于总体的β1和β0,但平均起来等于总体参数。

  (2)线性特性:即估计量β0和β1均为样本观测值Y的线性组合。

  (3)有效性:即β1和β0的方差最小。

  22、简单线性回归模型的检验

  (1)对估计值的直观判断:1对回归系数β1的符号判断;2对β1的大小判断。

  2(2)拟合优度的检验:拟合优度是指样本回归直线与样本观测值之间的拟合程度,通常用判定系数r

  表示。检验拟合优度的目的,是了解释变量X对被解释变量Y的解释程度。X对Y的解释能力越强,残差ei的绝对值就越小,从而样本观测值离回归直线的距离越近。判定系数计算公式:

  2 ESS Σ(Y(预测值)—Y(均值)) β1(回归系数)Σ(X(样本值)—X(均值))

  2r=———=——————————————=————————————————————

  TSS Σ(Y(样本值)—Y(均值)) Σ(Y(样本值)—Y(均值))

  2判定系数r的两个重要性质:

  1它是一个非负的量。

  222它是在0与1之间变化的量。当r=1时,所有的观测值都落在样本回归直线上,是完全拟合;当r=0

  时,解释变量与被解释变量之间没有关系。

  23、相关系数是衡量变量之间线性相关的指标。用r表示,它具有下列性质:

  (1)它是可正可负的数

  (2)它是在-1与+1之间变化的量。

  (3)它具有对称性,即X与Y之间的相关系数与Y与X值将的相关系数相同。

  (4)如果X和Y在统计上独立,则相关系数为零。当r=0,并不说明两个变量之间一定独立。这是因为,r仅适用于变量之间的线性关系,而变量之间可能存在非线性关系。

  Σ(X(样本值)—X(均值))(Y(样本值)—Y(均值))

  r=—————————————————————————————

  [Σ(X(样本值)—X(均值))Σ(Y(样本值)—Y(均值))]1/2

  21/2r=±[r]并且r的符号与回归系数β1的符号相同。

  相关系数与判定系数在概念上仍有明显区别:前者建立在相关分析的理论基础上,研究的是两个随机变量之间的线性相关的关系,不仅反映变量之间的因果关系;后者建立在回归分析的理论基础上,研究的是一个普通变量(X)对另一个随机变量的定量解释程度。

  24、相关系数的检验(t检验)

  一般说来,相关系数可以反映X与Y之间的线性相关程度。r的绝对值越接近于1,X与Y之间的线性关系就越密切。但相关系数通常是根据样本数据得到的,因而带有一定的随机性,且样本越小其随机型就越大。因此,我们有必要依据样本相关系数r对总体相关系数ρ进行统计检验。可构造t统计量:

  1/2 r(n—2)

  t=—————— 其中r为相关系数,n为样本数,服从(n-2)的t分布;查t分布得

  2 1/2 (1—r)

相应的临界值tα/2如果有:|t|≥tα/2则认为X与Y之间存在显著的线性相关关系。反之若有|t|≤tα/2则认为X与Y之间不存在显著的线性相关关系。

  25、在一元线性回归模型中Y=β0+β1X+μi,β1代表解释变量X对被解释变量Y的线性影响。如果X对Y的影响是显著的,则有β1≠0;若X对Y的影响不显著,则有β1=0。由于真实参数β1是未知的,我们只能依据样本估计值对β1进行统计检验。

  226、多重判定系数R:为了说明二元回归方程对样本观测值拟合的优劣,需要定义多重判定系数。多重

  222判定系数与简单判定系数r一样,R也定义为有解释的变差(ESS)与总变差(TSS)之比。显然,R也

  22是一个在0与1 之间的数。R的值越接近1,拟合优度就越高。R=1时,RSS=0,表明被解释变量Y的

  2变化完全由解释变量X1和X2决定;当R=0,表明Y的变化与X1,X2无任何关系。同时对于两个被解释变

  2量相同而解释变量个数不同的模型,包含解释变量多的模型就会有较高的R值。

  27、复相关系数R表示所有解释变量与Y的线性相关程度。在二元回归分析中,复相关系数R表示的就是解释变量X1 X2与被解释变量Y之间的线性相关程度。

  28、对总体回归模型的显著性检验(F检验)

  多元线性回归模型的总体显著性检验是检验所有解释变量对Y的共同影响是否显著。构造F统计量:

  2 ESS/(k-1) R/(k—1)

  F=——————=———————————其中k为模型中的参数个数,n为样本个数

  2 RSS/(n—k) (1—R)/(n—k) 对于给定的显著性水平,自由度为k—1和n—k,查F分布

  表可得临界值Fα(k-1,n-k),如果有F≥Fα(k-1,n-k)则认为X1和X2对Y的线性影响是显著的;反之,如果有F≤Fα(k-1,n-k),则总体线性回归模型不能成立。

  29、方差非齐性:经典线性回归分析的一个基本假定就是回归模型中的随机误差项的方差为常数,称为方差齐性假定或同方差性假定。如果回归模型中的随机误差项的方差不是常数,则称随机误差项的方差非齐性或为异方差。异方差主要存在于横截面数据中。存在异方差性将导致的后果:1参数的普通最小二乘估计虽然是无偏的,但却是非有效的。2参数估计量的方差估计量是有偏的,这将导致参数的假设检验也是非有效的。

  30、方差非齐性的检验:1样本分段比较法,这种方法由戈德菲尔德

(SMGoldfeld)和匡特(REQuandt)于1972年提出的,又称为戈德菲尔德-匡特检验。2残差回归检验法,这种方法是用模型普通最小二乘估计的残差或其绝对值与平方作为被解释变量,建立各种回归方程,然后通过检验回归系数是否为0,来判断模型的随机误差项是否有某种变动规律,以确定异方差是否存在。包括:(1)安斯卡姆伯(1961)和雷姆塞(1969)检验;(2)怀特检验(1980);(3)戈里瑟检验(1969)

  31、方差非其性下的参数估计采用:

  加权最小二乘法。鉴于异方差存在时普通最小二乘法估计的非有效性,对于已经检验确定存在非齐性方差的回归模型,就不应再直接应用普通最小二乘法来估计模型的参数。通常,解决这一问题的办法是采用加权最小二乘法。

  32、序列相关性:对于时间序列资料,由于经济发展的惯性等原因,经济变量的前期水平往往会影响其后期水平,从而造成其前后期随机误差项的序列相关,也称为自相关。产生序列相关性的原因:1经济22

  变量惯性的作用引起随机误差项自相关;2经济行为的滞后性引起随机误差项自相关;3一些随机因素的干扰或影响引起随机误差项自相关;4模型设定误差引起随机误差项自相关;5观测数据处理引起随机误差项序列相关。

  33、自相关性的后果:1参数的普通最小二乘估计虽然是无偏的,但却是非有效的。2参数估计量的方差估计量是有偏的,这将导致参数的假设检验也是非有效的。

  34、序列相关的检验——DW检验(德宾—瓦森检验)

  构造德宾—瓦森统计量:DW≈2(1-ρ),其中ρ为自相关系数,其变动范围在-1到+1之间,所以可得构造德宾—瓦森统计量的取值范围为:0≤DW≤4,显然,由检验统计量DW和样本回归残差的自相关系数ρ的关系可知:

  (1)当0≤DW<2时,有0≤ρ<1,这时样本回归残差中存在一阶正自相关。且DW的值越接近于0,ρ的值就越接近于1,表明样本回归残差中一阶正自相关的程度就越强;当DW=0时,就有ρ=1,这时样本回归残差存在完全一阶正自相性。

  (2)当2<DW≤4时,有-1≤ρ<0,这时样本回归残差中存在一阶负自相关。且DW的值越接近于4,ρ的值就越接近于-1,表明样本回归残差中一阶负自相关的程度就越强;当DW=4时,就有ρ=-1,这时样本回归残差存在完全一阶负自相性。

  (3)当DW=2时,有ρ=0,这时样本回归残差中不存在一阶序列相关;DW的值越接近于2,样本回归残差中一阶序列相关的程度就越弱。

  在德宾—瓦森统计量临界值表中给出有上下两个临界值dL和dU。检验时可遵照如下规则进行:

  (1)若DW<dL,拒绝ρ=0,则认为随机误差项μt存在一阶正自相关;

  (2)若DW>4-dL,拒绝ρ=0,则认为随机误差项μt存在一阶负自相关;

  (3)若dU<DW<4-dL,接受ρ=0,则认为随机误差项μt不存在一阶自相关;

  (4)若dL<DW<dU或4-dU<DW<4-dL则不能判断随机误差项μt是否存在一阶序列相关。

  35、序列相关情形下参数的估计(1)一阶差分法:所谓差分就是考察变量的本期值与以前某期值之差,一阶差分就是变量的本期值与前一期值之差。(2)广义差分法。

  36、多重共线性是指线性回归模型中的若干解释变量或全部解释变量的样本观测值之间具有某种线性的关系。其产生的原因:(1)经济变量之间往往存在同方向的变化趋势。(2)经济变量之间往往存在着密切的关联程度。(3)在模型中采用滞后变量也容易产生多重共线性。(4)在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性。

  37、多重共线性产生的后果:

  (1)各个解释变量对被解释变量的影响很难精确鉴别。(2)由于存在多重共线性时,模型回归系数估计量的方差会很大,这将使得进行显著性检验时认为回归系数的值与零无显著差异。(3)模型参数的估计量对删除或增添少量的观测值以及删除一个不显著的解释变量都可能非常敏感。

  38、对多重共线性的检验

  (1)简单相关系数检测法:两变量间的简单相关系数r是测定两变量之间线性相关程度的重要指标,因此可用来检验回归模型的解释变量之间的共线程度。

  (2)方差膨胀因子检测法:所谓方差膨胀因子就是将存在多重共线性时回归系数估计量的方差与无多重共线时回归系数估计量的方差对比而得出的比值系数。如果某个解释变量与其他所有解释变量都不相关,则其方差膨胀因此为1;膨胀因子的值大于1,就意味着所考虑的解释变量与其他解释变量有一定程度的相关,即存在一定程度的多重共线性。经验认为,方差膨胀因子大于5,多重共线性的程度就很严重。

  (3)判定系数增量贡献法:这是希尔(HTheil)提出的一种方法,它是从解释变量与被解释变量的相关程度来检测多重共线性的。

  39、对多重共线问题的处理:

  (1)追加样本信息;(2)使用非样本先验信息;(3)进行变量形式的转化;(4)使用有偏估计:包括岭回归估计和主成分回归估计。

  40、由于许多经济变量都难以十分精确地测量,所以模型中包含有观测误差的解释变量是一种常见的情形。这种模型,通常称为误差变量模型。由于观测误差的随机性,所以这种模型是一种典型的含有随机解释变量的模型。

  41、工具变量法:模型参数的最小二乘估计不具备一致的原因在于解释变量和随机误差项的相关。因此,若能找到一个解释变量,该变量与模型中的随机解释变量高度相关,但却不与随机误差项相关,那么就可用此变量和模型中的变量构造出模型相应回归系数的一个一致估计量。这个变量就称为是一个工具变量,这种估计方法就称为是工具变量法。对于时间序列资料,一种常用的工具变量是随机解释变量的滞后值或被解释变量的滞后值。对于截面数据资料,文献中常见的一种较简便的工具变量法是组平均法。

  42、设定误差主要有以下几种:1所设定的模型中遗漏了某个或某些与被解释变量有关的解释变量;2所设定的模型中包括了若干与被解释变量无关的某个或某些解释变量;3回归方程的模型形式设定有误。

  43、质的因素通常表明某种“品质”或“属性”是否存在,所以将这类品质或属性量化的方法之一就是构造取值为“1”或“0”的人工变数。“1”表示这种属性存在,“0”则表示这种属性不存在。这种取值为1和0的变量称为虚拟变量,又可称为哑变量、二进制变量。

  44、虚拟变量模型的一些特性:

  1以“1、0”取值的虚拟变量所反映的内容可以随意设定。

  2虚拟变量D=0代表的特征或状态,通常用以说明基础类型。

  3模型中的系数α0是基础类型的截距项,称为公共截距系数;α1系数可称为差别截距系数。因为,α1说明D取1时的那种特征的截距系数与基础类型的截距系数的差异。

  4如果一个回归模型有截距项,那么对于具有二种特征的质变量,我们只需引入一个虚拟变量。

  设定虚拟变量的一般规则是:如果一个质变量有m种特征或状态,只需引入m—1个虚拟变量。但如果回归模型不含截距项,则m种特征需要引入m个虚拟变量。

  45、在分布滞后模型中,回归系数β0称为短期影响乘数,它表示解释变量X变化一个单位对同期被解释变量Y产生的影响;将所短期影响乘数与所有的过渡性乘数相加就是长期影响乘数。

  46、在实践中使用最小二乘估计直接估计分布滞后模型时,一般是对分布滞后模型施加约束条件,以便减少模型中的参数。最常用的约束条件有两类:一类是假定滞后变量的系数βi先增加后下降,或先下降后增加;另一类是要求βi按几何数列衰减。

  47、在运用多项式估计分布滞后模型的参数时,首先要确定有限分布滞后模型的最大滞后长度K,然后还须确定多项式阶数m。确定m的方法是:先给m一个较大的值,然后用t检验逐步降低多项式的阶数,直到αm在统计上显著为止。

  48、联立方程模型就是由两个或两个以上相互联系得单一方程构成的经济计量模型。它能够比较全面反映经济系统得运行过程,因而已成为政策模拟和经济预测的重要依据。

  49、行为方程式,就是解释或反映居民、企业或政府经济行为的方程式。例如,需求函数和消费函数反映消费者行为,供给函数反映生产者行为。技术方程式是反映要素投入与产出之间技术关系得方程式。生产函数就是常见的技术方程式。制度方程式是指由法律、政策法令、规章制度等决定的经济数量关系。例如,根据税收制度建立的税收方程就是制度方程。恒等式:在联立方程中恒等式有两种:一种叫会计恒等式,是用来表示某种定义的恒等式。另一种恒等式叫做均衡条件,是反映某种均衡关系得恒等式。

  50、根据经济理论建立的描述经济变量关系结构的经济计量学方程系统称为结构式模型。结构式模型中的每一个方程都称为结构式方程。在结构式方程中,解释变量可以是前定变量,也可以是内生变量。结构方程的系数叫做结构参数。结构参数表示每个解释变量对被解释变量的直接影响,而解释变量对被解释变量的间接影响只能通过求解整个联立方程模型才可以取得,不能由个别参数得到。

  51、在结构式模型中,一些变量可能在一个方程中作为解释变量,而在另一方程中又作为被解释变量。这就使得解释变量与随机误差项μ之间存在相关关系,从而违背了最小二乘估计理论的一个重要假定,估计量因此是有偏的和非一致的。这就是所谓的联立方程偏倚。

  52、简化式模型就是把结构式模型中的内生变量表示为前定变量和随机误差项的函数模型。与结构参数不同,简化式参数反映前定变量的变化对内生变量产生的总影响,包括直接影响和间接影响。简化式参数的最小二乘估计量是无偏的、一致的。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1931066.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-28
下一篇2023-10-28

随机推荐

  • 草本滋养沐浴露详细资料大全

    康宝莱草本滋养沐浴露,蕴含多种保湿、滋润成分,洁净的同时舒缓肌肤,令肌肤光滑、柔润不紧绷。基本介绍 中文名 :草本滋养沐浴露 外文名 :BodywashShower Gel 产品简介,公司简介,产品特点,使用建议,产

    2024-04-15
    51100
  • 推荐一下和守护甜心一样好看的动画片~

    爱情樱兰高中男公关部 校园+爱情+后宫SA优等生 校园+爱情+后宫新安琪莉可 后宫+战斗四圣兽 后宫完美**进化论 校园+友情+爱情不可思议游戏 穿越+后宫遥远时空中 穿越+后宫彩云国物语 古代+后宫从今天开始做魔王 穿越+后宫金色的琴弦

    2024-04-15
    45100
  • 娇韵诗清爽控油脂精华露好用吗?

    对于脸部肌肤油脂分泌旺盛的妹纸们来说,肌肤也更容易出现一些常见的问题,油脂会影响人的外貌形象,导致脸上长痘痘,肌肤暗沉,毛孔粗大等问题,所以油皮的妹纸可以使用这款娇韵诗清爽控油脂精华露产品哦!娇韵诗清爽控油脂精华露好用吗?1、产品介绍娇韵诗

    2024-04-15
    44800
  • 精华素和精华液的区别及使用

    精华素和精华液其实在区别上面并不是很大,如果真的要说区别的话,那可能精华液相对稀释一些,而精华素就更加浓稠一点。它们两者的作用都有美白、祛斑、防皱等,当然功效往往都是由于它们的成分决定的。精华液在使用的顺序上面是护肤水之后,使用乳液滋润之前

    2024-04-15
    33200
  • 请问下爽肤水、保湿霜、保湿凝露、保湿乳液、精华乳、精华素使用的顺序是怎样的?

    使用顺序(按照分子越小越先用的原则):爽肤水→精华素→保湿乳液→保湿凝露→保湿霜,质地越清爽、越稀越先用,这样更有利于各种营养的充分吸收。保湿霜作为最后一道护肤步骤,目的是要把水分都锁在脸上,这样肌肤才不会水分流失。精华凝露就是精华素,直接

    2024-04-15
    34100
  • 娇后鱼子酱双抗套盒用着效果好吗

    好。1、效果。娇后鱼子酱双抗套盒中所含的鱼子酱精华含有兴奋剂和抗氧化剂,可以紧致肌肤,效果好。2、改善皮肤。娇后鱼子酱双抗套盒为肌肤提供充足的水分与能量,深层滋润肌肤、改善肌肤暗沉状态、守护肌肤水分、提高肌肤胶原再生力。好。1、保湿效果好。

    2024-04-15
    29000
  • 白云山巧依依美白淡斑菁华乳好用吗

    好用。巧依依美白淡斑菁华乳的祛斑效果是很不错的,在它里面的成分可以帮助肌肤达到美白的效果,也有帮助淡化斑点的效果。如果想要让存在的斑点问题能够更好得到改善,建议在使用的时候就要坚持使用,否则就会因为自己没有坚持使用依露美美白精华霜而导致美白

    2024-04-15
    29500

发表评论

登录后才能评论
保存