主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面但是,这也不是一定的,要视具体应用而定
3221 技术原理
主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。
主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:
地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例
计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。
3222 方法流程
1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法 及标准差标准化法 ,其中s= (图33);
图33 方法流程图
2)根据标准化数据求出方差矩阵;
3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;
4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。
3223 适用范围
主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。
1、主成分分析(PrincipalComponentAnalysis,PCA),是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
2、在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
3、主成分分析首先是由K皮尔森(KarlPearson)对非随机变量引入的,尔后H霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
欢迎分享,转载请注明来源:品搜搜测评网