如果你知道了世界上最大的铜矿,那么对世界前十大煤矿感兴趣吗?你肯定会认为在我国,其次是山西煤矿,其实不然,在美国的罗切斯特煤矿,储量为23亿吨,来看看世界前十大煤矿有哪些?
10塞雷洪煤矿,哥伦比亚预储煤量:75亿吨
位于哥伦比亚瓜贾拉半岛的塞雷洪煤矿,预计可采煤量为75亿吨,其中的66亿吨已经确认,于1985年开始投入生产,是一处大型的露天矿,是世界前十大煤矿之一。
9拉斯帕兹卡娅煤矿,俄罗斯预储煤量:78亿吨
位于俄罗斯克麦罗沃州的拉斯帕兹卡娅煤矿,是哦俄罗斯最大的煤矿,预计可采煤量为78亿吨,20世纪70年代末开始投入生产,是世界前十大煤矿之一。
8科巴洛煤矿,美国预储煤量:85亿吨
也位于美国怀俄明州,处东南部,预计可采煤量为85亿吨,自1978年以来一直在生产,是主要的露天采矿地,是世界前十大煤矿之一。
7亚瑟山煤矿,澳大利亚预储煤量:104亿吨
该煤矿位于澳大利亚新南威尔士州猎人谷地带,预计可采煤量为104亿吨(其中585亿吨确认的和46亿吨预测),由两个露天矿组成。1968年开始生产,年产量1600万吨,矿场寿命为40年,是世界前十大煤矿之一。
6皮克当斯煤矿,澳大利亚预储煤量:106亿吨
该煤矿位于澳大利亚昆士兰中部的鲍文盆地,预计可采煤量约为106亿吨,是一种露天矿场,于1972年开始生产,近年来产量创历史新高,是世界前十大煤矿之一。
5黑雷露天煤矿,美国预储煤量:146亿吨
也是位于美国的怀俄明州,预计可采煤量146亿吨,2012年生产原煤9290万吨,2011年为1049亿吨,据这个速度至少可以维持到2021年,是世界前十大煤矿之一。
4莫阿蒂泽煤矿,莫桑比克预储煤量:149亿吨
莫阿蒂泽煤矿位于莫桑比克的特提省,预计可开采的煤量为149亿吨,也有可能是119亿吨,运营商是巴西矿业公司淡水河谷,持有该矿95%的股份,于2015年正常投入生产,是世界前十大煤矿之一。
3黑岱沟露天煤矿,中国预储煤量:15亿吨
位于准格尔煤田中部,也在中国内蒙古自治区,据估计有15亿吨可开采的煤炭储量,1990年建设,1999年开始生产,生产低硫、低磷煤,年生产能力为2000万吨,是世界前十大煤矿之一。
2哈尔乌素露天煤矿,中国预储煤量:17亿吨
位于中国的内蒙古自治区东部,处陕蒙交界地带,是中国最大的露天煤矿,预计可采煤量将超过17亿吨,露天煤矿现有在籍职工1157人。该煤矿的开发成本约为11亿美元,第一批煤炭在2008年10月,年产量约为20吨原煤,是世界前十大煤矿之一。
1罗切斯特煤矿,美国预储煤量:23亿吨
位于美国的怀俄明州波德河煤田,是目前世界上储量最大的煤矿,美国40%的煤炭都来自这里,预计可采煤量将超过23亿吨。也认为是美国最干净的煤炭,硫含量很低,是世界前十大煤矿之一。
(一)美国
美国有较丰富的煤层气资源,据美国天然气研究所2001年评价,在17个含煤盆地或地区中,煤层气资源量为212×1012m3。煤层气资源主要分布在西部的落基山脉中、新生代含煤盆地,在这一地区集中了美国近85%的煤层气资源,其余15%分布在东部阿巴拉契亚和中部石炭纪含煤盆地中(表4-17)。美国煤层气资源主要赋存在1500m以浅的煤层中,其中粉河盆地中的煤层气主要赋存在1000m以浅的煤层中。目前,落基山脉中、新生代含煤盆地群不仅是美国煤层气资源最为富集的地区,而且是煤层气勘探开发最为活跃的地区。
表4-17美国含煤盆地煤层气资源概况表
注:压力类型:u为欠压;n为常压;o为超压;为不确定数字。①最大含气量(取样深度,m);②数据只来源于FortUnion组;③为Fruitland组最大深度。
美国是世界上开采煤层气最早和最成功的国家,其煤层气工业起步于20世纪70年代,大规模发展始于80年代。1984年共有煤层气井2840口,1990年上升到2982口,1995年增到7256口井,2000年13986口,生产井数几乎每五年翻一番。
美国的煤层气探明可采储量增长迅速,1989年仅有11034×108m3,1999年突破6000×108m3,2004年已接近9000×108m3(图4-42)。煤层气产量在短短的几年里直线上升,从1980年的不足1×108m3,迅速上升到到2004年的48705×108m3(图4-43),占气体能源(天然气)总量的9%。美国有完善的天然气管道系统,生产的煤层气大部分都进入天然气管网销售给燃气公司,矿井抽放的煤层气有的直接供给坑口发电厂,或与煤混合燃烧作为锅炉燃料。
(二)澳大利亚
澳大利亚煤炭资源量为17×1012t,平均煤层气含量为08~168m3/t,煤层埋深普遍小于1000m,渗透率多分布在1×10-3~10×10-3μm2,煤层气资源量为(8~14)×1012m3,主要分布在东部悉尼、鲍恩和苏拉特3个含煤盆地中(图4-44)。
图4-42美国煤层气历年累计可采储量直方图
图4-43美国煤层气年产量历年变化图
图4-44澳大利亚含煤盆地及其煤层气资源分布图
澳大利亚的煤层气勘探始于1976年,是继美国成功开发利用煤层气之后在煤层气勘探方面进展较快的国家之一。
主要原因是澳大利亚充分吸收美国煤层气资源评价和勘探、测试方面的成功经验,同时针对本国煤层含气量高、含水饱和度变化大、原地应力高等地质特点进行深入研究,开发水平井高压水射流改造技术,从而在鲍恩含煤盆地的勘探上取得了重大突破。澳大利亚的一些矿井已广泛应用水平钻孔、斜交钻孔和地面采空区垂直钻孔抽放技术。1987~1988年期间已经用地面钻井方法在煤层中采出了煤层气。2000~2001年仅昆士兰的鲍恩盆地用于煤层气勘探的费用就达4440万美元,占该盆地全部12亿美元勘探费的37%。昆士兰天然气公司已经在靠近Chinachill的Argyle-1井取得煤层气生产成功,日产气量超过28320m3。目前,煤层气的勘探和生产已经成为昆士兰的石油和天然气工业的基本部分。澳大利亚1998年煤层气产量只有056×108m3,2004年煤层气产量为128×108m3,已进入商业化开发阶段。澳大利亚目前的煤层气开发活动主要在东部沿海地区开展,因主要城市和工业区分布在东部沿海地区,煤层气的开发和利用具有巨大的潜在市场。
(三)加拿大
据估计,加拿大17个盆地和含煤区煤层气资源量为(179~76)×1012m3,其中阿尔伯达省是加拿大最主要的煤层气资源基地。
加拿大煤层气开发的起步时间比较晚,基本与我国开展煤层气工作的时间相当。1987~2001年,加拿大仅有250口煤层气生产井,其中4口单井产气量达到2000~3000m3/d。由于多年来加拿大政府一直支持煤层气的发展,一些研究机构根据本国以低变质煤为主的特点,开展了一系列的技术研究工作,例如在羽状水平井、连续油管压裂等技术方面取得了进展,降低了煤层气开采成本,加上前两年北美地区常规天然气储量和产量下降,供应形势日趋紧张,天然气价格日益上升,给煤层气的发展带来了机遇,仅2002~2003年,就增加1000口左右的煤层气生产井,使煤层气年产量达到51×108m3,煤层气生产井的单井日产量在3000~7000m3。到了2004年,煤层气生产井已达2900多口,年产量达到155×108m3。
(四)其他国家
1英国、德国与波兰
英国、德国与波兰煤层气资源量分别为2×1012m3、3×1012m3和3×1012m3。在煤矿区的煤层气开发和废弃矿井煤层气的商业开发和利用方面取得了很大成功,矿井煤层气抽放和利用已有多年历史,生产的煤层气主要用作锅炉燃气或供给建在矿区的煤层气电站,少量民用。目前正积极开发和应用煤层气发电新技术。煤层气地面开发在近几年才刚刚开始,为了鼓励煤层气的开发和利用,英国和波兰制订了鼓励政策。按照英国《企业投资管理办法》,开采煤层气可以享受税收优惠政策,即投资者的投资可以通过减免所得税或资本红利税而得以回收。波兰政府给予从事石油、天然气以及煤层气勘探的企业十年免税,吸引了大量国内外投资者。
2俄罗斯、乌克兰和哈萨克斯坦
俄罗斯煤层气资源量占世界第一位,为(17~113)×1012m3。乌克兰煤层气资源量为2×1012m3,哈萨克斯坦煤层气资源量为2×1012m3。由于资金与技术上的问题,煤层气的勘探开发活动仅停留在煤矿瓦斯的处理和煤层气资源评价上。目前俄罗斯和乌克兰正在制订一些税收优惠政策和管理法规,鼓励外国公司投资开发煤层气。
3印度
印度煤层气资源量为08×1012m3,印度政府计划以竞标的方式开发若干有利区块,特别是在地质条件类似于美国的煤层气产地已确定了7个这样的地区,钻井资料表明,在这些地区每口井日产量可达5000~6000m3,高峰可达10000m3以上。印度煤层气开采还存在问题:一是技术上的问题,如准确估算煤层气的含气量和渗透率;二是商业上的问题,市场问题尚未解决,管道设施也跟不上。
其他一些国家也在进行煤层气资源的评价和勘探,包括法国、匈牙利、西班牙、南非、新西兰等。但目前除美国、澳大利亚和加拿大外,世界上其他国家尚没有大规模开发煤层气。形成这种局面的原因可能有三点:第一,煤层气作为一种非常规天然气,其前期工作往往需要很大的资金投入,如果没有税收政策上的优惠,很难吸引资金;第二,其他国家尚不能彻底解决各自存在的具体技术问题;第三,由于煤层气本身的特殊性,从地质评价到工业开采一般需要相当长的时间。
主要是碳 C
别称:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。
一种固体可燃有机岩,主要由植物遗体经生物化学作用,埋藏后再经地质作用转变而成。俗称煤炭。中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品 ,河南巩义市也发现有西汉时用煤饼炼铁的遗址。《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭 。明代李时珍的《本草纲目》首次使用煤这一名称。希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有 《石史》 ,其中记载有煤的性质和产地;古罗马大约在2000年前已开始用煤加热。
煤炭是一种可以用作燃料或工业原料的矿物。它是古代植物经过生物化学作用和地质作用而改变其物理、化学性质,由碳、氢、氧、氮等元素组成的黑色固体矿物。
煤作为一种燃料,早在800年前就已经开始。煤被广泛用作工业生产的燃料,是从18世纪末的产业革命开始的。随着蒸汽机的发明和使用,煤被广泛地用作工业生产的燃料,给社会带来了前所未有的巨大生产力,推动了工业的向前发展,随之发展起煤炭、钢铁、化工、采矿、冶金等工业。煤炭热量高,标准煤的发热量为 7000大卡/千克。而且煤炭在地球上的储量丰富,分布广泛,一般也比较容易开采,因而被广泛用作各种工业生产中的燃料。
煤炭除了作为燃料以取得热量和动能以外,更为重要的是从中制取冶金用的焦炭和制取人造石油,即煤的低温干馏的液体产品——煤焦油。经过化学加工,从煤炭中能制造出成千上万种化学产品,所以它又是一种非常重要的化工原料,如我国相当多的中、小氮肥厂都以煤炭作原料生产化肥。我国的煤炭广泛用来作为多种工业的原料。大型煤炭工业基地的建设,对我国综合工业基地和经济区域的形成和发展起着很大的作用。
此外,煤炭中还往往含有许多放射性和稀有元素如铀、锗、镓等,这些放射性和稀有元素是半导体和原子能工业的重要原料。
煤炭对于现代化工业来说,无论是重工业,还是轻工业;无论是能源工业、冶金工业、化学工业、机械工业,还是轻纺工业、食品工业、交通运输业,都发挥着重要的作用,各种工业部门都在一定程度上要消耗一定量的煤炭,因此有人称煤炭是工业的“真正的粮食”。
我国是世界上煤炭资源最丰富的国家之一,不仅储量大,分布广,而且种类齐全,煤质优良,为我国工业现代化提供了极为有利的条件。
煤的生成
在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥;泥炭或腐泥被埋藏后 , 由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤;当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。
用途
煤是重要能源,也是冶金、化学工业的重要原料。主要用于燃烧、炼焦、气化、低温干馏、加氢液化等。①燃烧。煤炭是人类的重要能源资源,任何煤都可作为工业和民用燃料。②炼焦。把煤置于干馏炉中,隔绝空气加热,煤中有机质随温度升高逐渐被分解,其中挥发性物质以气态或蒸气状态逸出,成为焦炉煤气和煤焦油,而非挥发性固体剩留物即为焦炭。焦炉煤气是一种燃料,也是重要的化工原料。煤焦油可用于生产化肥、农药、合成纤维、合成橡胶、油漆、染料、医药、炸药等。焦炭主要用于高炉炼铁和铸造,也可用来制造氮肥、电石。电石是塑料、合成纤维、合成橡胶等合成化工产品。③气化。气化是指转变为可作为工业或民用燃料以及化工合成原料的煤气。④低温干馏。把煤或油页岩置于 550℃左右的温度下低温干馏可制取低温焦油和低温焦炉煤气,低温焦油可用于制取高级液体燃料和作为化工原料。⑤加氢液化。将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质破坏,与氢作用转化为低分子液态和气态产物,进一步加工可得汽油、柴油等液体燃料。加氢液化的原料煤以褐煤、长焰煤、气煤为主。
综合、合理、有效开发利用煤炭资源,并着重把煤转变为洁净燃料,是人们努力的方向。
产地
在各大陆、大洋岛屿都有煤分布,但煤在全球的分布很不均衡,各个国家煤的储量也很不相同。中国、美国、俄罗斯、德国是煤炭储量丰富的国家,也是世界上主要产煤国,其中中国是世界上煤产量最高的国家。中国的煤炭资源在世界居于前列,仅次于美国和俄罗斯。
煤的开采
煤的开采是一项最艰苦的工作,当前正在花较大的力量来改善工作条件由于煤炭资源的埋藏深度不同,开采方式一般相应地也有矿井开采(埋藏较深)和露天开采(埋藏较浅)之分其中,可露天开采的资源量在总资源中的比重大小,是衡量开采条件优劣的重要指标,中国可露天开采的储量仅占75%,美国为32%,澳大利亚为35%;矿井开采条件的好坏与煤矿中含瓦斯的多少成反比,中国煤矿中含瓦斯比例高,高瓦斯和有瓦斯突出的矿井占40%以上中国采煤以矿井开采为主,如山西\山东\徐州及东北地区大数采用这一开采方式,也有露天开采,如朔州平朔煤矿——全国最大的露天煤矿
煤可以创造沥青、煤气、煤焦油和焦炭
煤当原料使用煤在1200℃的密闭炉(称为炼焦炉)中干馏,可得固定碳很高含量之煤焦,俗称焦炭
煤的分类
煤有褐煤、烟煤、无烟煤、半无烟煤等几种。云南常用的是褐煤、烟煤、无烟煤三种。煤的种类不同,其成分组成与质量不同,发热量也不相同(表4-15)。单位重量燃料燃烧时放出的热量称为发热量,人为规定以每公斤发热量7000千卡的煤作为标准煤,并以此标准折算耗煤量。
(1)褐煤:多为块状,呈黑褐色,光泽暗,质地疏松;含挥发分40%左右,燃点低,容易着火,燃烧时上火快,火焰大,冒黑烟;含碳量与发热量较低(因产地煤级不同,发热量差异很大),燃烧时间短,需经常加煤。
(2)烟煤:一般为粒状、小块状,也有粉状的,多呈黑色而有光泽,质地细致,含挥发分30%以上,燃点不太高,较易点燃;含碳量与发热量较高,燃烧时上火快,火焰长,有大量黑烟,燃烧时间较长;大多数烟煤有粘性,燃烧时易结渣。
(3)无烟煤:有粉状和小块状两种,呈黑色有金属光泽而发亮。杂质少,质地紧密,固定碳含量高,可达80%以上;挥发分含量低,在10%以下,燃点高,不易着火;但发热量高,刚燃烧时上火慢,火上来后比较大,火力强,火焰短,冒烟少,燃烧时间长,粘结性弱,燃烧时不易结渣。应掺入适量煤土烧用,以减轻火力强度。
1989年10月 ,国家标准局发布《 中国煤炭分类国家标准 》(GB5751-86),依据干燥无灰基挥发分Vdaf、粘结指数G、胶质层最大厚度Y、奥亚膨胀度 b、煤样透光性 P、煤的恒湿无灰基高位发热量Qgr,maf等6项分类指标,将煤分为14类。即褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。
化学组成
煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,而碳、氢、氧三者总和约占有机质的95%以上;煤中的无机质也含有少量的碳、氢、氧、硫等元素。碳是煤中最重要的组分,其含量随煤化程度的加深而增高。泥炭中碳含量为50%~60%,褐煤为60%~70%,烟煤为74%~92%,无烟煤为 90%~98%。煤中硫是最有害的化学成分。煤燃烧时,其中硫生成SO2,腐蚀金属设备,污染环境。煤中硫的含量可分为 5 级:高硫煤,大于4%;富硫煤,为25%~4%;中硫煤,为15%~25%;低硫煤,为10%~15%;特低硫煤 ,小于或等于1%。煤中硫又可分为有机硫和无机硫两大类。
工业分析
通过工业分析可大致了解煤的性质。又称技术分析。是指煤的水分、挥发分、灰分的测定以及固定碳的计算。水分可分为外在水分、内在水分以及与煤中矿物质结合的结晶水、化合水。外在水分为煤炭在开采、运输、储存及洗选过程中,附着在煤颗粒表面和大毛细孔中的水分。内在水分为吸附或凝聚在煤颗粒内部的毛细孔中的水分,温度超过100℃时可将煤中内在水分完全蒸发出来 。灰分是指煤完全燃烧后残留的残渣量。灰分来自煤的矿物质。挥发分是指煤中有机质可挥发的热分解产物。挥发分随煤化程度增高而降低,可用于初步估测煤种。固定碳是指煤中有机质经隔绝空气加热分解的残余物。固定碳随变质程度的加深而增高,可作为鉴定煤变质程度的指标。
工艺性质
煤的工艺性质是工业评价合 理 用 煤的依据,主要包括粘结性、结焦性、发热量、化学反应性、热稳定性、焦油产率和可选性等。粘结性是指煤在高温干馏中产生胶质体,使煤粒相互粘结成块的性能。粘结性是评价炼焦用煤的主要指标。结焦性是指在炼焦炉中能炼出适合高炉用的有足够强度的冶金焦炭的性质。发热量是指单位质量的煤在完全燃烧时所产生的热量。煤的发热量是煤质的重要指标,是计算热平衡、耗煤量、热效率等的依据。
煤中伴生元素
指以有机或无机形态富集于煤层及其围岩中的元素。有些元素在煤中富集程度很高,可以形成工业性矿床,如富锗煤、富铀煤、富钒石煤等,其价值远高于煤本身。
根据煤中伴生元素的性质和用途,可分为有益元素、有害元素和指相元素3类。有益元素主要 有锗、镓、铀、钒等,可被利用。有害元素 主要有硫 、磷、氟、氯、砷、铍、铅、硼、镉、汞、硒、铬等。硫是煤中常见的有害成分,其他有害元素在煤中含量一般不高,但危害极大,如砷是一种有毒元素。煤在燃烧中,硫是造成城镇环境污染的主要物质源。当然,对有害元素如果收集、处理得当也可变成对人有用的财富。煤中伴生元素,有各自的地球化学性质,形成于不同的沉积环境中。因此,可根据元素的相对含量、元素的共生组合关系及元素的比值,来判断相和沉积环境。
美国矿产储量居世界第1位的有:煤、钼、天然碱、硼、溴、硫酸钠;第2位的有:铜、金、镉、银、钇、磷、硫;第3位的有:铅、锌、稀土、重晶石、碘;第4位的有:铂族金属、钨;第5位的有:铁矿石;第6位的有:天然气、锑、铋、钾盐;第8位的有:钛铁矿、铀:石油居第11位。
美国矿产资源具有以下几个特点:
第一, 美国矿产资源总量丰富, 余缺并存。美国矿产资源丰富, 发现2500多种矿物, 经地质勘查工作证实,美国探明有矿产储量的矿产有88 种, 是世界上探明储量最为丰富的国家之一。美国矿产资源总量虽然丰富, 但有些矿产资源并不丰富,甚至有些矿产资源主要依靠从国外进口。在诸多矿产中, 资源比较丰富的有煤、铀等能源矿产,铜矿、金矿、钼矿、铅矿、锌矿等金属矿产资源和硼矿、硫矿、磷矿、天然碱、膨润土、硅藻土、高岭土、硅灰石、滑石、石膏等非金属矿产资源。其中尤以铜矿、金矿和化肥化学矿产资源最为丰富。对美国来说,石油能源资源、铁矿和锰矿、铬矿、镍矿等钢铁矿产资源并不丰富,铝土矿及砷矿、铋矿、钨矿、锡矿、石英、萤石、云母矿等几十种矿产则属于短缺资源。
第二, 美国各类矿产资源丰度状况不尽相同。就总体来看, 以非金属矿资源最为丰富, 分布亦广,金属矿和能源矿次之。能源矿产以煤矿和铀矿资源比较丰富, 在世界上占有重要地位, 而油气资源丰度一般,金属矿产中以铜、铅锌等有色金属矿产和金银等贵金属矿产较为丰富, 其他金属矿产一般; 非金属矿产中以化工矿产和轻工矿产为最丰富。
第三, 美国矿产资源地理分布广泛, 但不均匀。美国各州均有数量不等的某些矿产,但分布是不均匀的。中部地台区主要有石油、天然气、煤、铁、铅、锌和铜矿等矿产;东部阿巴拉契亚褶皱带中主要有石油、天然气、煤、有色金属和贵金属; 西部科迪勒拉褶皱带是美国矿产资源的主要富集区, 不仅产有大量铜、钼、金、银、铀、钒、铅、锌等金属矿产, 而且非金属矿产和煤、石油、天然气、地热等能源矿产也很丰富;墨西哥湾和大西洋拗陷带中的矿产以石油、天然气、褐煤和钾、硫、磷等沉积矿产为主。总体看来, 固体矿产中金属矿产主要分布在西部地区,中部和东部较少; 非金属矿产则在东、中、西部州均有分布。
煤
煤
coal
一种固体可燃有机岩,主要由植物遗体经生物化学作用,埋藏后再经地质作用转变而成。俗称煤炭。中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品 ,河南巩义市也发现有西汉时用煤饼炼铁的遗址。《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭 。明代李时珍的《本草纲目》首次使用煤这一名称。希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有 《石史》 ,其中记载有煤的性质和产地;古罗马大约在2000年前已开始用煤加热。
煤的生成 在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥;泥炭或腐泥被埋藏后 , 由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤;当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。
煤的分类 由于研究内容和使用的不同,煤有各种分类法,如按元素组成、成因、变质程度、工业用途、工艺性质等的分类 。早期多根据 煤的元素组成分类 ,称科学分类法。在地质上常采用成因分类法,即将煤分为腐殖煤、腐泥煤和腐殖腐泥煤。按煤化程度可分为褐煤、烟煤和无烟煤。1989年10月 ,国家标准局发布《 中国煤炭分类国家标准 》(GB5751-86),依据干燥无灰基挥发分Vdaf、粘结指数G、胶质层最大厚度Y、奥亚膨胀度 b、煤样透光性 P、煤的恒湿无灰基高位发热量Qgr,maf等6项分类指标,将煤分为14类。即褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。
化学组成 煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,而碳、氢、氧三者总和约占有机质的95%以上;煤中的无机质也含有少量的碳、氢、氧、硫等元素。碳是煤中最重要的组分,其含量随煤化程度的加深而增高。泥炭中碳含量为50%~60%,褐煤为60%~70%,烟煤为74%~92%,无烟煤为 90%~98%。煤中硫是最有害的化学成分。煤燃烧时,其中硫生成SO2,腐蚀金属设备,污染环境。煤中硫的含量可分为 5 级:高硫煤,大于4%;富硫煤,为25%~4%;中硫煤,为15%~25%;低硫煤,为10%~15%;特低硫煤 ,小于或等于1%。煤中硫又可分为有机硫和无机硫两大类。
工业分析 通过工业分析可大致了解煤的性质。又称技术分析。是指煤的水分、挥发分、灰分的测定以及固定碳的计算。水分可分为外在水分、内在水分以及与煤中矿物质结合的结晶水、化合水。外在水分为煤炭在开采、运输、储存及洗选过程中,附着在煤颗粒表面和大毛细孔中的水分。内在水分为吸附或凝聚在煤颗粒内部的毛细孔中的水分,温度超过100℃时可将煤中内在水分完全蒸发出来 。灰分是指煤完全燃烧后残留的残渣量。灰分来自煤的矿物质。挥发分是指煤中有机质可挥发的热分解产物。挥发分随煤化程度增高而降低,可用于初步估测煤种。固定碳是指煤中有机质经隔绝空气加热分解的残余物。固定碳随变质程度的加深而增高,可作为鉴定煤变质程度的指标。
工艺性质 煤的工艺性质是工业评价合 理 用 煤的依据,主要包括粘结性、结焦性、发热量、化学反应性、热稳定性、焦油产率和可选性等。粘结性是指煤在高温干馏中产生胶质体,使煤粒相互粘结成块的性能。粘结性是评价炼焦用煤的主要指标。结焦性是指在炼焦炉中能炼出适合高炉用的有足够强度的冶金焦炭的性质。发热量是指单位质量的煤在完全燃烧时所产生的热量。煤的发热量是煤质的重要指标,是计算热平衡、耗煤量、热效率等的依据。
煤中伴生元素 指以有机或无机形态富集于煤层及其围岩中的元素。有些元素在煤中富集程度很高,可以形成工业性矿床,如富锗煤、富铀煤、富钒石煤等,其价值远高于煤本身。
根据煤中伴生元素的性质和用途,可分为有益元素、有害元素和指相元素3类。有益元素主要 有锗、镓、铀、钒等,可被利用。有害元素 主要有硫 、磷、氟、氯、砷、铍、铅、硼、镉、汞、硒、铬等。硫是煤中常见的有害成分,其他有害元素在煤中含量一般不高,但危害极大,如砷是一种有毒元素。煤在燃烧中,硫是造成城镇环境污染的主要物质源。当然,对有害元素如果收集、处理得当也可变成对人有用的财富。煤中伴生元素,有各自的地球化学性质,形成于不同的沉积环境中。因此,可根据元素的相对含量、元素的共生组合关系及元素的比值,来判断相和沉积环境。
用途 煤是重要能源,也是冶金、化学工业的重要原料。主要用于燃烧、炼焦、气化、低温干馏、加氢液化等。①燃烧。煤炭是人类的重要能源资源,任何煤都可作为工业和民用燃料。②炼焦。把煤置于干馏炉中,隔绝空气加热,煤中有机质随温度升高逐渐被分解,其中挥发性物质以气态或蒸气状态逸出,成为焦炉煤气和煤焦油,而非挥发性固体剩留物即为焦炭。焦炉煤气是一种燃料,也是重要的化工原料。煤焦油可用于生产化肥、农药、合成纤维、合成橡胶、油漆、染料、医药、炸药等。焦炭主要用于高炉炼铁和铸造,也可用来制造氮肥、电石。电石是塑料、合成纤维、合成橡胶等合成化工产品。③气化。气化是指转变为可作为工业或民用燃料以及化工合成原料的煤气。④低温干馏。把煤或油页岩置于 550℃左右的温度下低温干馏可制取低温焦油和低温焦炉煤气,低温焦油可用于制取高级液体燃料和作为化工原料。⑤加氢液化。将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质破坏,与氢作用转化为低分子液态和气态产物,进一步加工可得汽油、柴油等液体燃料。加氢液化的原料煤以褐煤、长焰煤、气煤为主。
综合、合理、有效开发利用煤炭资源,并着重把煤转变为洁净燃料,是人们努力的方向。
产地 在各大陆、大洋岛屿都有煤分布,但煤在全球的分布很不均衡,各个国家煤的储量也很不相同。中国、美国、俄罗斯、德国是煤炭储量丰富的国家,也是世界上主要产煤国,其中中国是世界上煤产量最高的国家。
煤可以创造沥青、煤气、煤焦油和焦碳
mei
煤
coal;
煤
méi
(1)
(形声。从火,某声。本义:烟尘)
(2)
同本义 [soot]。如:煤尾(屋中的烟尘)。又指制墨的烟灰
试扫其煤以为墨,黑光如漆,松墨也。――宋·沈括《梦溪笔谈》
(3)
指墨 [ink]
中官欲于苑中作墨灶,取西湖九里松作煤。――宋·陆游《老学庵笔记》
(4)
又如:煤精(煤的一种。色黑,质硬,可用以雕刻工艺品)
(5)
灯芯的余烬,即灯花 [snuff]。如:煤火(煤燃烧时的火焰)
(6)
煤炭,一种黑色固体矿物 [coal]。如:煤毒(即煤气);煤炸(小煤块);煤掌(煤矿井下的工作面);煤气灶(以煤气为燃料的灶具)
煤仓
méicāng
[coal bunker] 贮藏船用煤使用的一种大隔间
煤层
méicéng
[coal bed] 作层状分布在地下的煤
煤房
méifáng
(1)
[room]∶房柱式采煤的回采工作地点,通大巷,适合于水率或缓慢倾斜的煤层的开采
(2)
[bordroom]∶煤房中的煤正被回采或已采完所形成的空间
煤矸石
méigānshí
[gangue] 煤矿中无用的岩石
煤核
méihé
[coal Cinder;partly-burned coal] 煤中的一种结核,通常由方解石或氧化硅和碳质物质组成,并有碎片状或显微状的植物残体
煤核儿
méihúr
[partly-burned briquet] 没烧透的煤块或煤球
煤焦油
méijiāoyóu
[coal tar] 干馏煤炭得到的黑褐色粘稠液体
煤矿
méikuàng
(1)
[colliery]∶煤矿藏和采煤有关的建筑物
(2)
[coalpit]∶采掘煤炭的矿井
煤气
méiqì
[coal gas] 由煤制得的气体
煤气灯
méiqìdēng
[gas burner;gas lamp] 一种带喷嘴或有一组出气口的装置,通过它放出可燃气体并燃烧
煤气罐
méiqìguàn
[gas pitcher] 储存石油液化气的罐儿;也指液化煤气灶的整套装置
煤气中毒,煤炭中毒
méiqì zhòngdú,méitàn zhòngdú
[gas poisoning] 因吸入煤、木炭及其他含碳物质不完全燃烧产生的一氧化碳而中毒
煤球
méiqiú
[coal ball] 煤末加水和黄土制成的小圆球,是做饭取暖等的燃料
煤炭
méitàn
[coal] 即“煤”。植物残体经受不同程度的腐解转变而成的一种黑色或褐黑色固体可燃矿物物质
煤田
méitián
[coalfield] 大面积的开煤地带
煤烟
méiyān
[smoke from burning coal] 煤燃烧时发出的烟
煤窑
méiyáo
[coalpit] 小型煤矿,一般用手工开采
煤油
méiyóu
[kerosine;paraffin] 石油分馏出来的燃料油,挥发性比汽油低
煤渣
méizhā
[coal cinder] 煤燃烧后剩余的灰渣
煤柱
méizhù
[coal column] 地下采煤时,为了工作方便和安全而保留的、暂时或永久不予开采的一部分矿体
煤砖
méizhuān
[briquette] 通常由细小的散料(如用作燃料的煤粉)掺入粘结料,或掺入粘结料又加压而形成的常为砖形的一种结实的块料
煤
méi ㄇㄟˊ
(1)
古代的植物压埋在地底下,在不透空气或空气不足的条件下,受到地下的高温和高压年久变质而形成的黑色或黑褐色矿物:~矿。~田。~层。~气。~焦油。~精。
(2)
烟气凝结的黑灰,为制墨的主要原料:~炱。松~(松烟)。
基于前人测试资料及对部分空白区补采样品的测试分析成果,讨论我国煤中As等17种有害微量元素的含量水平。所依据的资料来自各大聚煤区228个煤矿(井田)335个煤层样品中17种有害微量元素含量的2317个数据(表2-13,异常高值的数据计算平均值被包括)。其中,砷294个,铅126个,汞67个,镉109个,铬191个,硒143个,氟112个,氯135个,镍121个,锰107个,钴169个,钼145个,铍70个,锑96个,铀200个,钍175个,溴57个。同时,还利用了我国21个石煤、碳沥青和黑色页岩样品中17种微量元素含量数据136个(表2-14)。
表2-13 中国多数煤中As等17种有害微量元素的含量水平 (wB/10-6)
表2-14 我国南方石煤、炭沥青和黑色页岩(Z—P1)中17种有害微量元素的含量 (wB/10-6)
与国外资料(表2-15)对比,中国煤中,除As,F,Cl,Mn,Th,Br之外,其他11种元素平均含量与美国煤中相应元素含量平均值相差不大,除Pb,Hg,Cl,Mn,U之外,其他12种元素平均含量与世界煤中相应元素平均含量基本相同。美国是世界上对煤中微量元素研究最为详细、且数据积累最多的国家。本次研究得出的我国煤中多数有害微量元素平均含量与美国煤及世界煤对应元素含量相近。这一方面说明本项目统计的数据对我国煤是有代表性的,另一方面也表明随样品个数的增多,各国煤中微量元素平均含量趋于接近。先前我国对煤中As的研究多集中于西南高As煤或As引起危害的地区,这正是造成中国煤中As含量普遍较高假相的重要原因。
表2-15 中国煤中As等17种有害微量元素平均含量与有关研究结果比较 (wB/10-6)
注:美国煤据Finkelman(1993);世界煤据Valkovic(1983),带的元素据Юдович(1985);地壳丰度据刘英俊等(1984)。
与地壳丰度(表2-15)相比,我国绝大多数煤中As,Pb,Hg,Se,Cl,Mo,Sb,U,Br含量较高。特别是煤中Hg,Se及Sb的含量与相应元素地壳丰度之间存在的数量级差异,在煤利用过程中应该引起特别关注。
地理位置不同,煤中有害微量元素含量也不尽相同。对比华南与华北煤中有害微量元素的平均含量(表2-13;图2-5),发现华南多数煤中As,Cd,Mo,Be,Sb,U的平均含量明显高于华北煤,Mn的平均含量明显低于华北煤,而Pb,Se,F,Cl,Co,Th,Br在两大区煤中的含量相差不大。
图2-5 华南与华北煤中元素含量平均值对比
就我国南方震旦纪至早二叠世石煤、炭沥青和黑色页岩来看,As,Pb,Hg,Cd,Cr,Se,F,Ni,Co,Mo,Be,Th,U,Sb等有害微量元素的算术平均含量显著高于全国煤中相应元素的含量平均值(表2-14)。
欢迎分享,转载请注明来源:品搜搜测评网