二、帽细胞的显著特征是核仁明显,染色质遍及整个核质并沿核膜分布。
三、有丝分裂的开始称为前期
核仁消失
四、核仁消失,但有的植物在终变期的早期核仁仍然很大。
五、没有耍花招
核仁巧克力饼里也没有隐藏花椰菜
六、随著恶性程度增加
核仁组成区嗜银蛋白染色数目亦呈现有意义的增加
七、还观察到有数目不等的核子体
叫做微核仁状子体
八、如果你摇晃它
你能听到核仁的声音哦
九、核仁巧克力饼与牛奶。唉呦!
十、细胞核大、不规则、核浓染
核仁清晰明显
十一、卵黄形成前的卵母细胞期,卵母细胞核仁移到核膜内侧,核内物质通过核孔进入细胞质。
十二、一两个核仁被苏木精染成蓝色
十三、柳橙汁、凤梨、蜂蜜、核仁及水蜜桃
lishixinzhi混以酸奶及桔子雪波
十四、第6和第7染色体两者是组成核仁的染色体
十五、考试表红帽企业Linux与Linux核仁2421版一起释放
十六、免疫斑点印迹结果进一步证实,核仁骨架的蛋白质成分中存在肌动蛋白。
十七、山上的野李味道苦
但它的核仁能作药用。
十八、腊八节要到了,为了使你不在家也能喝到腊八粥,我决定送你一串手链,上面串着幸运糯米,开心果腹,相思蜜豆,招财红枣,美满核仁,至于水就自己找点儿吧,嘿嘿,祝你腊八快乐哦。
十九、当H3K9甲基化路径正常是,异染色质处于致密状态,在核糖体DNA周围形成单个核仁。
二十、结果表明,小球藻共生体可能影响了宿主草履虫细胞中所述细胞器的功能、数量和分布,并影响了核仁的功能、数量和分布。
二十一、结构致密边界清楚的NLB常孤立存在于细胞质中在NLB存在的细胞中
细胞核形态不规则
核仁易见并靠近核膜
二十二、其中之一是调节异染色质内和异染色质外的重复DNA序列的途径
还有就是核仁结构的调节
二十三、结果:电镜下可见实验组食管癌细胞出现线粒体固缩,粗面内质网减少,滑面内质网扩张,核膜断裂,核仁固缩。
二十四、外源DNA或染色质在非洲爪蟾卵提取物中可以诱导细胞核样结构的重建。重建核除不具有核仁样结构外,在其它形态结构上与真核细胞核十分相似。
二十五、萎缩腺体内细胞的胞浆含量少
核浓染
偶尔可见斑点状核仁
二十六、细胞质里含有一个近似球形的细胞核
是田由更加黏稠的物质构成的
可分为核膜
染色质
核液和核仁四部分
二十七、表观遗传的现象很多
已知的有DNA甲基化、基因组印记、母体效应、基因沉默、核仁显性、休眠转座子激活和RNA编辑等。
可移动遗传元件的移动方式称为转位因此又称如下:
转座基因。
转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。
复合型的转座因子称为转座子(trans—poson,Tn)。这种转座因子带有同转座无关的一些基因,它的两端就是IS,构成了“左臂”和“右臂”。两个“臂”可以是正向重复,也可以是反向重复。这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座。
转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列(转座基因)
转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。
高等植物基因组含有大量各式各样的串联重复序列和出现频率很高的散布重复序列,如转座子、反转座子、短散布核元件和一些新发现的小型转座子等,它们当中的大多数是具有移动能力的可转座基因。这些可转座基因在漫长的进化过程中对基因和基因组多样性的形成所起的作用,成为近年来分子生物学领域中的重要研究内容。
细胞的基本共性:1,相似的化学组成,各细胞的基本构成元素都是C, H, O, N, P,S,等几种,这些元素所形成的氨基酸,核苷酸,脂质和糖类是构成细胞的基本构件。
2,脂-蛋白体系的生物膜
3,相同的遗传装置
4,一分为二的分裂方式
整个生物界最基本的类群包括3个域:原核生物界,古核生物界,真核生物界。
与真核细胞相比,原核细胞的基因组很小,仅为10^6~10^7 bp,大部分原核细胞的主要遗传物质仅为一个环装DNA。
最小最简单的细胞--支原体,支原体能寄生于细胞内繁殖,因此是细胞培养中常见又难以去除的污染源。
革兰氏阳性和阴性菌细胞壁如下图
青霉素的抑菌作用主要通过抑制肽聚糖的合成,从而抑制细胞壁的形成阳性菌因此对青霉素敏感,反之,阴性菌因肽聚糖含量极少,对青霉素不敏感。
细菌细胞质膜:选择性交换物质,细胞质膜内侧含有电子传递与氧化磷酸化的酶系,可以进行有氧呼吸,细胞质膜内侧含有一些酶,与核糖体共同执行合成向外分泌蛋白质的功能。细胞质膜还含有细胞色谱酶与合成细胞壁成分的酶。因此,细胞质膜可以完成内质网,高尔基体和线粒体所承担的大部分工作。此外,细菌细胞膜外侧有受体蛋白,参与细菌对周围环境的应答反应。
中膜体又称间体或质膜体,由细胞膜内陷形成的囊泡状,管状,包层状膜结构,每个细胞内有一个或数个中膜体,其功能尚不明确。
人们延用了真核细胞的染色体概念,也把细菌的核区DNA称为染色体,实际上它没有真正的染色体结构。
细菌细胞核外DNA,细菌细胞中,除核区DNA外,还存在可自主复制的质粒。
细菌细胞的核糖体:核糖体充满于细胞中,少部分附着在细胞膜内侧,合成运输到胞外的蛋白。
细菌细胞内生孢子:很多革兰氏阳性菌处于不利环境或耗尽营养时,容易形成内生孢子,又称芽孢,是对不良环境有抵抗力的休眠体。
细菌细胞的增殖及其调控:DnaA蛋白是复制起点(OriC)的结合蛋白,大约10个DnaA蛋白携带ATP结合于OriC, ATP 水解促使此处富含AT碱基对的区域解链,开启DNA复制。
古细菌又称古核生物,常发现于极端特殊环境。
一,生物膜系统
二,遗传信息传递与表达调控
核小体盘绕与折叠成紧密程度不同的常染色质与异染色质,细胞分裂阶段又进一步包装成染色体。核仁主要是转录rRNA与核糖体亚单位装配的场所。
三,细胞骨架系统
细胞骨架系统是由一系列特异的结构蛋白装配而成的网架系统,对细胞形态与内部结构的合理排布起支架作用。细胞骨架可分为胞质骨架与核骨架。胞质骨架主要由微丝,微管与中等纤维等构成。
核骨架包括核纤层( nuclear lamina)与核基质( nuclear matrix)。核纤层的成分是核纤层蛋白,核基质的成分比较复杂。它们与基因表达,染色质构建与排布有关。
细胞的大小及其影响因素:
细胞的尺寸取决于核糖体的活性,因为蛋白质的量由核糖体来决定。
从果蝇到哺乳动物的各种生物,都有一套几乎完全相同的信号网络来调控细胞的大小。哺乳动物中这一网络的中心叫mTOR ( mammalian target of rapamycin)的蛋白激酶,因其能被雷帕霉素( rapamycin)抑制而得名,果蝇等生物中也存在同源蛋白质TOR。在小鼠或果蝇中,该蛋白质的失活会导致细胞体积变小。
细胞外部氨基酸,葡萄糖等营养物质,以及胰岛素等生长因子—活化—mTOR(或TOR)
活化的mTOR有两个功能:活化核糖体蛋白S6( rpS6)的激酶( S6K),导致rpS6磷酸化,从而可能加强核糖体的翻译效率,因而使细胞增大。活化的mTOR将翻译抑制因子 4E-BP 磷酸化,解除其对翻译起始因子4E的抑制。增强蛋白质的翻译,促使蛋白质积累。
细胞大小的决定是复杂的,还受到其他多种因素的影响。如DNA含量越大,核糖体越多,因而翻译的蛋白质越多,细胞就越大。
原核细胞与真核细胞的比较:
植物细胞与动物细胞的比较:
植物细胞特有结构:细胞壁,液泡,叶绿体。
非细胞生物——病毒:
病毒很小
遗传载体多样性
彻底的寄生性
病毒以复制和装配的方式进行增殖
病毒在细胞内繁殖:
病毒识别和入侵细胞,病毒表面蛋白质与细胞表面特异受体相互作用,病毒与细胞发生特异性的吸附。动物病毒进入细胞的方式有两种:一是细胞以主动胞饮的方式使病毒进入,二是某些有囊膜的病毒,通过其囊膜与细胞质膜融合呃呃呃方式进入细胞,如HIV,或通过胞饮进入细胞,然后与胞饮囊泡的膜融合进入细胞质中。噬菌体侵染细菌时仅将其核酸注入细胞。植物病毒难以穿越坚韧的细胞壁,常常借住于昆虫进食过程侵染植物细胞。
细胞生物学研究方法
研究特异DNA,RNA片段或蛋白质所常用的Southern杂交,Northern杂交和蛋白免疫印迹等。
光学显微镜:
普通复式光学显微镜,相差显微镜和微分干涉显微镜,荧光显微镜,激光扫描共焦显微镜
电子显微镜:
电镜制样技术:超薄切片技术,负染色技术,冷冻蚀刻技术,电镜三维重构与低温电镜技术。
扫描隧道显微镜
细胞及其组分的分析方法:
超离心技术分离细胞组分:密度剃度离心是将要分离的细胞组分小心地铺放在含有密度逐渐增加的,高溶解性的惰性物质(如蔗糖)形成的密度梯度溶液表面,通过重力或离心力的作用使样品中不同组分以不同的沉降率沉降。各组分的沉降率与它们的大小形状有关,通常以沉降系数表示。
速度沉降主要用于分离密度相近而大小不一的细胞组分。
等密度沉降用于分离不同密度的细胞组分。
细胞成分的细胞化学显示方法: 为了测定蛋白质,核酸,多糖和脂质等细胞组分通常利用一些显色剂与所检测物质中一些特殊集团特异性结合的特征。
福尔根反应可以特异显示呈紫红色的DNA的分布。其原理是:酸水解可以去除RNA,仅保留DNA,并去除DNA上嘌呤脱氧核糖核苷键的嘌呤。使脱氧核糖的醛基暴露。所暴露的自由醛基与希夫试剂反应呈紫红色。
PAS反应则利用过碘酸氧化作用生成醛基,醛基与碱性品红反应产生紫红色化合物,用于确定多糖的存在。
四氧化锇与不饱和脂肪酸反应呈黑色,用以证明脂滴的存在。苏丹Ⅲ(深红色)染色则通过扩散进入脂滴中,使脂滴着色。
蛋白质检测方法:米伦反应,氮汞试剂与组织中的蛋白质侧链上的酪氨酸残基反应,形成红色沉淀。重氮反应中,氢氧化重氮与酪氨酸,色氨酸和组氨酸起反应形成有色复合物。蛋白质中的-SH基可用形成硫醇盐共价键的试剂进行检测。
由于大多数固定剂对酶都有失活或钝化作用,所以,在进行细胞中某种酶的定性研究时,样品制备常采用冰冻切片,或以冷丙酮,甲醛进行短时间固定,以尽量保持酶的活性。
特异蛋白抗原的定位与定性:
免疫荧光与免疫电镜是最常见的研究细胞内蛋白质分子定位的重要技术。对蛋白质组分进行体外分析定性通常采用免疫印迹,放射免疫沉淀和蛋白质芯片,质谱分析等技术。
1,免疫荧光技术就是将免疫学方法(抗原-抗体特异结合)与荧光标记技术相结合用于研究特异蛋白抗原在细胞内分布的方法。包括直接和间接免疫荧光技术两种。
2,免疫电镜技术:
免疫电镜技术可分为免疫铁蛋白技术,免疫酶标技术与免疫胶体金技术,其主要区别是与抗体结合的标志物不同。
细胞内特异核酸的定位与定性:
细胞内特异核酸( DNA或RNA)的定性与定位的研究,通常采用原位杂交技术。用标记的核酸探针通过分子杂交确定特异核苷酸序列在染色体上或在细胞中位置的方法称为原位杂交。
定量细胞化学分析与细胞分选技术:
流式细胞术可定量地测定某一细胞中的DNA,RNA或某一特异的标记蛋白的含量,以及细胞群体中上述成分含量不同的细胞的数量,它还可将某一特异染色的细胞从数以万计的细胞群体中分离出来,以及将DNA含量不同的中期染色体分离出来,甚至可用于细胞的分选。
细胞培养与细胞工程:
动物细胞培养,原代培养细胞一般传至10代左右就传不下去了,细胞生长出现停滞,大部分细胞衰老死亡。极少数细胞度过危机,又可传代40~50代次,传至50代以后又出现危机。
植物细胞培养:单倍体细胞培养,用花药在人工培养基上进行培养。可以从小孢子(雄性生殖细胞)直接发育成胚状体,然后长成单倍体植株。或者通过愈伤组织诱导分化。
原生质体培养,一般用植物的体细胞,先用纤维素酶处理去掉细胞壁,去壁的细胞称为原生质体。原生质体可以在无菌培养基中生长分裂。
细胞融合与单克隆抗体技术:
两个或多个细胞融合为一个双核或者多核细胞的现象称为细胞融合。介导动物细胞融合常用的促融剂有灭活的病毒或化学物质(如聚乙二醇,PEG);植物细胞融合时,要先用纤维素去掉细胞壁,然后才便于原生质体融合。20世纪80年代又挡发明了电融合技术(electronfusion method)。将悬浮细胞在低压交流电场中聚集成串珠状细胞群,或对相互接触的单层培养细胞,再施加高压电脉冲处理使其融合。
基因型相同的细胞融合称为同核体,基因型不同的融合后称为异核体。
B淋巴细胞杂交瘤技术用于制备单克隆抗体(monoclonal antibody)
制备过程:将小鼠骨髓瘤细胞与经绵阳红细胞免疫过的小鼠脾细胞( B淋巴细胞)在聚乙二醇或灭活的病毒介导下发生融合。由于骨髓瘤细胞缺乏TK或HGPRT,在含氨基蝶呤的培养液内不能成活。只有融合细胞才能在HAT(次黄嘌呤,氨基蝶呤和胸腺嘧啶核苷)的培养液内通过旁路合成核酸而得以生存。通过HAT选择培养和细胞克隆,可以获得大量分泌单克隆抗体的杂交瘤细胞株。
为了探明核质相互作用的机制,科学家们创建了细胞拆合技术。所谓细胞拆合技术就是把细胞核与细胞质分离开来,然后把不同来源的胞质体(cytoplast)和核体( karyoplast)相互组合,形成核质杂交细胞。
细胞拆合可以分为物理法和化学法两种类型。物理法就是用机械方法或短波光把细胞核去掉或使之失活,然后用微吸管吸取其他细胞的核,注入去核的细胞质中,组成新的杂交细胞。这种核移植必须用显微操纵仪进行操作。化学法是用细胞松弛B (cytochalasin B)处理细胞,细胞出现排核现象,再结合离心技术,将细胞拆分为核体和胞质体两部分。显微操作技术是在显微镜下,用显微操作装置对细胞进行解剖和向核内注入基因。
荧光漂白恢复技术(fluorescence photobleaching recovery, FPR)技术是使用亲脂性或亲水性的荧光分子,如荧光素,绿色荧光蛋白等与蛋白或脂质藕联,用于检测所标记分子在活体细胞表面或细胞内部的运动及其迁移速率。FPR技术的原理是:利用高能激光束照射细胞的某一特定区域,使该区域内标记的荧光分子发生不可逆的淬灭,这一区域称光漂白( photobleaching)区。随后,由于细胞中脂质分子或蛋白质分子的运动,周围非漂白区的荧光强度逐渐恢复到原有水平。这一过程称为荧光恢复。荧光恢复的速度在很大程度上反映荧光标记蛋白或脂质在细胞中运动速率。
单分子技术与细胞生命活动的研究:
与生命科学相关的单分子技术是在细胞内实时观测单一生物分子运动规律的技术。
酵母双杂交技术:
酵母双杂交技术( yeast two-hybrid system)是一种利用单细胞真核生物酵母在体内分析蛋白质-蛋白质相互作用的系统。细胞基因转录起始需要转录激活因子的参与,转录激活因子一般由两个或两个以上相互独立的结构域构成,即DNA结合域( DNA binding domain, DB)和转录激活域( activation domain, AD)。前者可以识别DNA上特异转录调控序列并与之结合;后者可与其他成分作用形成转录复合体,从而启动它所调节基因的转录。如果要证明蛋白A是否与蛋白B在细胞内相互作用,则可分别制备DB与蛋白A的融合蛋白(又称"诱饵",bait),以及AD与蛋白B的融合蛋白(又称猎物,prey)。如果蛋白A与蛋白B在细胞内相互结合,则可形成与转录激活因子类似的具有DB和AD结构域的复合物,从而启动报告基因的表达。反之,则报告基因不表达。
荧光共振能量转移技术:
荧光共振能量转移(fluorescence resonance energy transfer, FRET)技术是用来检测活细胞内两种蛋白质分子是否直接相互作用的重要手段。其基本原理是:在一定波长的激发光照射下,只有携带发光集团A的供体分子可被激发出波长为A的荧光,而同一激发光不能激发携带发光集团B的受体分子发出波长为B的荧光。然而,当供体所发出的荧光光谱A与受体上的发光集团的吸收光谱相互重叠,并且两个发光集团之间距离小到一定程度时,就会发生不同程度的能量转移,即受体分子的发光集团吸收了供体所发出的荧光,结果受体分子放出了波长为B的荧光,这种现象称为FRET现象。如下图:
如果两个蛋白质分子的距离在10nm之内,就可能发生FRET现象,由此认为这两个蛋白质存在着直接的相互作用。
放射自显影技术:
利用放射性同位素的电离射线对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性,定位与半定量研究的一种细胞化学技术。对细胞或生物体内生物大分子进行动态研究和追踪(pulse-chase)是这一技术独具的特征。放射自显影技术包括两个主要步骤:即同位素标记的生物大分子前体的掺入和细胞内同位素所在位置的显示。
生物信息学( bioinformatics)
细胞生物学常用模式生物:大肠杆菌,酵母,线虫,果蝇,斑马鱼,小鼠,拟南芥
突变体制备:DNA和RNA两个水平制备,从RNA水平主要是RNA干扰技术。RNAi技术是指利用一段特异的双链RNA或单链反义RNA通过注射,转染或转基因的方法导入到细胞或模式生物体中,这样的RNA可以启动一套信号通路来最终降解与这段RNA对应的,通常是包含这段序列的mRNA,使该mRNA无法翻译成相关的蛋白质。
基因敲除(knock out)是在DNA水平制备突变体的一种方法。通常DNA水平突变体的制备方法有三种(以果蝇为例):化学诱变法(给果蝇喂食化学诱变剂,造成随机的点突变或者DNA片段丢失),P因子介导的突变(利用转座子的转座特性及转座子的移动过程中可以带走部分基因组DNA序列的特性)和基于同源重组的定点突变。
蛋白质组学技术:
1,双向凝胶电泳
双相凝胶电泳的第一相是等电聚焦( IEF)电泳,采用pH梯度,根据蛋白质等电点不同进行分离。第二相是SDS-聚丙烯酰胺凝胶电泳( SDS-PAGE),根据蛋白质相对分子质量大小进行分离。
2,色谱技术
3,质谱
4,蛋白质芯片
5,生物信息学
细胞质膜(plasma membrane)曾称细胞膜( cell membrane)。真核细胞,细胞内的膜系统与细胞质膜统称为生物膜
流动镶嵌模型主要强调:1,膜的流动性 2,膜蛋白分布的不对称性,有的分布于膜表面 ,有的嵌入或横跨脂双分子层。
近些年提出的脂筏模型 ( lipid raft model)是对膜流动性的新的理解。该模型认为甘油磷脂为主体的生物膜上,胆固醇,鞘磷脂等富集区域形成相对有序的脂相,如同漂浮在脂双层上的"脂筏"一样载着执行某些特定生物学功能的各种膜蛋白。脂筏最初可能是在高尔基体上形成,最终转移到细胞质膜上。有些脂筏可以在不同程度上与膜下细胞骨架蛋白交联。据推测,一个直径100nm的脂筏可载有600个蛋白质分子
目前对生物膜结构的认识可归纳如下:
1,具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,磷脂分子以疏水性尾部相对,极性头部朝水相形成脂双分子层,每层磷脂分子称为一层小叶( leaflet)。
2,蛋白质分子以不同的方式镶嵌在脂双层分子中或结合在其表面,蛋白质的类型,蛋白质分布的不对称性及其与脂分子的协同作用赋予生物膜各自的特性与功能。
3,生物膜可看成是蛋白质在双层脂分子中的二维溶液。然而膜蛋白与膜脂之间,膜蛋白与膜蛋白之间及其与膜两侧其他生物大分子的复杂的相互作用,在不同程度上限制了膜蛋白和膜脂的流动性。同时也形成了赖以完成多种膜功能的脂筏,纤毛和微绒毛等结构。
4,在细胞生长和分裂等整个生命活动中,生物膜在三维空间上可出现弯曲,折叠,延伸等改变,处于不断地动态变化中。从而保证了诸如细胞运动,细胞增殖等代谢活动的进行。
膜脂:主要包括甘油磷脂(glycerophosphatide),鞘脂(sphingolipid)和固醇( sterol)三种基本类型。生物膜上还有少量的糖脂( glycolipid),鉴于绝大多数的糖脂都属于鞘氨醇的衍生物,因此,目前人们多将糖脂归于鞘脂质。
1,甘油磷脂
甘油磷脂构成了脂膜的基本成分,占整个脂膜的50%以上。甘油磷脂为3-磷酸甘油的衍生物,包括磷脂酰胆碱(卵磷脂,phosphatidylserine , PS),磷脂酰乙醇胺(phosphatidylethanolamine, PE)和磷脂酰肌醇( phosphatidylinositol, PI)等,主要在内质网上合成。组成生物膜的甘油磷脂分子主要特征是:1,具有一个与磷酸基团相结合的极性头和两个非极性的尾(脂肪酸链),但存在于线粒体内膜和某些细菌脂膜上的心磷脂除外,它具有4个非极性的尾部。2,脂肪酸碳链为偶数,多数碳链由16或18个碳原子组成。3,除饱和脂肪酸外,常常还含有1~2个双键的不饱和脂肪酸。
2,鞘脂
3,固醇
胆固醇及其类似物统称为固醇,它是一类含有4个闭环的碳氢化合物,其亲水的头部为一个羟基,是一种分子刚性很强的两性化合物。
膜蛋白:
根据膜蛋白分离的难易程度及其与脂分子的结合方式,膜蛋白可分为3种基本类型:外在膜蛋白(extrinsic membrane protein)或称外周膜蛋白(peripheral membrane protein),内在膜蛋白或称整合膜蛋白(intergral membrane protein),脂锚定膜蛋白( lipid anchored protein)。
外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。磷脂酶就是其中一例。它也是蛇毒的活性成分。
脂锚定膜蛋白是通过与之共价相连的脂分子(脂肪酸或糖脂)插入膜的脂双分子中,而锚定在细胞质膜上,其水溶性的蛋白质部分位于脂双层外。
内在膜蛋白与膜结合比较紧密,只有用去垢剂处理使膜崩解后才可分离出来。内在膜蛋白占整个膜蛋白的70%~80%,据估计人类基因中,1/4~1/3基因编码的蛋白质为内在膜蛋白。
内在膜蛋白与膜脂结合的方式:
目前所了解的内在膜蛋白均为跨膜蛋白,跨膜蛋白在结构上可分为:胞质外结构域,跨膜结构域和胞质内结构域等3个组成部分。它与膜结合的主要方式有:
1,膜蛋白的跨膜结构域与脂双层分子的疏水核心相互作用,这是内在膜蛋白与膜脂结合的最主要和最基本的结合方式。
2,跨膜结构域两端携带正电荷的氨基酸残基,如精氨酸,赖氨酸等与磷脂分子带负电的极性头部形成离子键,或带负电的氨基酸残基通过Ca2+,Mg2+等阳离子与带负电的磷脂极性头部相互作用。
3,某些膜蛋白通过自身在胞质一侧的半胱氨酸残基共价结合到脂肪酸分子上,后者插入脂双层中进一步加强膜蛋白与脂双层的结合力。
去垢剂( detergent)是一端亲水,一段疏水的两性小分子,是分离与研究膜蛋白的常用试剂。去垢剂可以插入膜脂,与膜脂或膜蛋白的跨膜结构域等疏水部位结合,形成可溶性的颗粒。去垢剂分为离子型去垢剂和非离子型去垢剂两种类型。常用的离子型去垢剂如十二烷基硫酸钠( SDS)具有带电荷的基团,其分子式如下:
SDS可使细胞膜崩解,与膜蛋白疏水部分结合并使其与膜分离,高浓度的SDS还可以破坏蛋白质中的离子键和氢键等非共价键,甚至改变蛋白质亲水部分的构象。这一特性常用于蛋白质成分分析的SDS凝胶电泳。由于SDS对蛋白质的作用较为剧烈,可引起蛋白质变性,因此在纯化膜蛋白时,特别是为获得有生物活性膜蛋白时,常常采用不带电荷的非离子去垢剂。
常用的非离子去垢剂Triton X-100分子式如下:
非离子去垢剂也可使细胞膜崩解,但对蛋白质的作用比较温和,它不仅用于膜蛋白的分离纯化,也用于除去细胞的膜系统,以便对细胞骨架蛋白和其他蛋白质进行研究。
膜脂的流动性主要指脂分子的侧向运动,它在很大程度上是由脂分子本身的性质决定的,一般来说,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大(猜想植物油和动物油,手动滑稽)
膜蛋白的流动性
膜脂和膜蛋白运动速率的检测
荧光漂白恢复技术( FPR)是研究膜蛋白或膜脂流动性的基本实验技术之一。
膜脂和膜蛋白在生物膜上呈不对称分布,糖蛋白和糖脂的糖基部分均位于细胞质膜的外侧。
为了便于研究个了解细胞质膜以及其他生物膜的不对称性,人们将细胞质的各个膜面命名如下:与细胞外环境接触的膜面称质膜的细胞外表面(extrocytoplasmic surface, ES),这一层脂分子和膜蛋白称细胞膜的外小叶( out leaf),与细胞质基质接触的膜面称质膜的原生质表面(protoplasmic surface, PS)。
膜蛋白的不对称性
细胞质膜相关的膜骨架
细胞质膜特别是膜蛋白常常与膜下结构(主要是细胞骨架系统)相互联系,协同作用,并形成细胞表面的某些特化结构以完成特定的功能。这些特化结构包括膜骨架( membrane associated cytoskeleton),鞭毛和纤毛,微绒毛及细胞的变形足等,分别与细胞形态的维持,细胞运动,细胞的物质交换和信息传递等功能有关。
膜骨架:膜骨架是指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它从力学上参与维持细胞质膜的形状并协助质膜完成多种生理功能。
红细胞质膜蛋白及膜骨架
SDS-聚丙烯酰胺凝胶电泳分析血影的蛋白质成分显示:红细胞膜蛋白主要包括血影蛋白或称血膜肽(spectrin),锚蛋白( ankyrin),带3蛋白,带41蛋白,带42蛋白和肌动蛋白( actin),此外还有一些血型糖蛋白(glycoprotein)。
膜骨架蛋白主要成分包括血影蛋白,肌动蛋白,锚蛋白和带41蛋白等。
细胞质膜的基本功能
1,为细胞的生命活动提供相对稳定的内环境
2,选择性的物质运输
3,提供细胞识别位点,并完成细胞内外信息跨膜传导
4,为多种酶提供结合位点,使酶促反应高效而有序地进行
5,介导细胞与细胞,细胞与胞外基质之间的连接
6,质膜参与形成具有不同功能的细胞表面特化结构
7,膜蛋白的异常与某些遗传病,恶性肿瘤,自身免疫病甚至神经退行性疾病相关,很多膜蛋白可作为疾病治疗的药物靶标。
核糖体结合技术是结构分子生物学。
核糖体结合技术以人工合成的三核苷酸,在含核糖体、AA-tRNA的适当离子强度的反应液中保温。使反应液通过硝酸纤维素滤膜,游离的AA-tRNA因相对分子质量小能自由通过滤膜。加入三核苷酸模板可以促使其对应的AA-tRNA结合到核糖体上,体积超过膜上的微孔而被滞留,这样就能把已结合到核糖体上的AA-tRNA与未结合的AA-tRNA分开。用14C标记特定氨基酸,从模板三核苷酸与氨基酸的关系可测知该氨基酸的密码子。
基因重组发生在二倍体生物的每一个世代中。基因重组指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合。基因是一个包含必要的信息,在可控制的方式生产功能的RNA产物的核酸段。
减数分裂前期和后期发生基因重组。减数第一次分裂前期(也可以说是减数分裂的四分体时期):同源染色体上的非姐妹染色单体的交叉互换。减数第一次分裂后期:同源色体分离,非同源染色体自由组合,发生基因重组。
扩展资料
基因重组一般发生在减数分裂过程中,包含两种情况,一种是减一后期同源染色体上的等位基因彼此分离,非同源染色体上的非等位基因彼此结合;另一种情况是联会时期的交叉互换。
除此之外,基因工程也可以看做特殊情况下的基因重组,例如基因工程中,人们将目的基因加到运载体上再导入受体细胞,这也属于基因重组。基因重组只能产生新的基因型不能产生新基因,是生物变异的主要来源。
通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。
-基因重组
生姜(Zingiber officinale)是一种极具价值的食药两用园艺作物, 既为传统中药的重要成分,又是重要的调味料 ,在我国有悠久的栽培历史。中国生姜栽培面积、产量和出口量均居全球第一位。长江中上游生姜总面积226万亩,占全国497%,是推动乡村振兴的优选产业。姜具有多年生宿根,根茎肉质、肥厚,内含多种营养成分,它除了含有蛋白质、碳水化合物、多种维生素和矿物质外,还含有姜辣素、姜油、姜醇等生物活性物质,具有调味、抗癌、抗真菌、抗炎症、抗氧化和抗血小板聚集等用途,是香料家族和药用植物家族的重要成员。姜辣素是生姜特有的呈味物质,也是生姜多种功能活性的主要功能因子,在调味品、化妆品和医疗保健等领域具有广阔的应用前景。尽管姜在世界范围内有显著的经济价值,但由于其有性繁殖困难,基因组庞大、杂合度高,相关的分子生物学和遗传选育工作一直停滞不前。此外,长久以来生姜基因组信息的缺乏,限制了我们对 合成调控机理的理解,导致生姜分子育种发展缓慢。
近日,Horticulture Research背靠背在线发表了两个不同品种生姜基因组数据,分别是平顶山学院植物遗传育种研究组与北京林业大学等单位合作的题为 《Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger》 的研究论文,以及重庆文理学院与西南大学等单位合作的题为 《Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway》 的研究论文。
☆☆☆
平顶山学院植物遗传育种研究组等单位的研究解析了我国重要的传统生姜品种单倍型基因组序列,揭示了单倍型基因组间差异,推断了姜高度不育的基因组基础,初步澄清了姜酚(姜辣素)生物合成通路,为后续的功能研究和分子设计育种奠定了重要基础。
该研究以全国首个国家农产品地理标志登记保护的生姜品种 张良姜 为研究对象。据记载,自汉代起“张良姜”已有2000多年的种植历史,现保存在河南省平顶山市鲁山县张良镇。此品种有“姜中之王”美称,具有色泽深黄、辛辣芳香、气浓味长、质实丝多、百煮不烂、久贮不腐等优良特性。
该研究利用先进的长读长测序技术, 解析了“张良姜”单倍型基因组序列;检测了两个单倍型基因组间的遗传差异,以此推断出与姜高度配子败育率相关的结构变异区;揭示出两套基因组间等位基因表达差异可能与基因顺式调控区、编码区序列差异、转座子的临近效应以及选择压有关;利用基因共表达网络分析,初步解析了姜酚(姜辣素)生物合成相关的基因调控机制。
☆☆☆
重庆文理学院等单位的研究破解了西南地区主栽品种 竹根姜 的基因组,利用短读长(36951 Gb),长读长PacBio(28581 Gb)及Hi-C(56316 Gb)策略组装出竹根姜 两套单倍型高质量基因组 ,单倍型的基因组大小分别为153 Gb (contig N50: 468 M)和151 Gb (contig N50:528 M),9811%的序列锚定到22条染色体(图1)。PacBio 读长在2个单倍型的overlap分别为 9795%和981%,显示了分型的准确性。 两套单倍型的Ka/Ks分析揭示生姜驯化历史过程中经历了相似的选择压力。通过等位基因分析,总共55,635个基因(占所有基因的72%)在两个单倍型中具有同源性。生姜17,226对等位基因中,119%在转录水平表现出染色体偏好性(图2)。该研究发现生姜基因组杂合度36%,是目前已报道杂合度最高的植物基因组。重复序列高,其中长末端片段重复(long terminal repeats,LTRs)占6106%,可能是导致其基因组大、杂合度高的主要原因,同时也是生姜基因组进化的主要驱动力。生姜等位基因在两套单倍型中没有展现出表达差异,17,226对等位基因中有2055对(119%)在转录水平表现出染色体偏好性。
通过整合基因组、转录组和代谢组数据进行整合分析,该研究构建了生姜特有成分姜辣素的合成通路,筛选出12个参与姜辣素合成的关键酶家族(PAL, C4H, 4CL, CST, C3′H, C3OMT, CCOMT, CSE, PKS,AOR, DHN, 和DHT),鉴定出38个可能调控姜辣素合成的重要转录因子家族,并绘制出姜辣素合成的分子调控网络(图3)。
作者简介
Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger
平顶山学院程世平副教授、北京林业大学博士生贾凯华(现山东省农业科学院工作)、博士生刘辉和张仁纲博士(源宜(山东)基因科技股份有限公司)为共同第一作者。通讯作者是北京林业大学毛建丰副教授和比利时根特大学教授、比利时皇家科学院院士Yves Van de Peer。平顶山市农业科学院马爱锄博士、于从文研究员也参与了该项研究。该工作还包含来自瑞典于默奥大学、加拿大拉瓦尔大学、不列颠哥伦比亚大学、根特大学、比勒陀利亚大学和南京农业大学等单位的合作者。该研究得到河南省科技攻关以及平顶山学院高层次人才启动基金等项目的资助。
Haplotype-resolvedgenome of diploid ginger (ingeiber officinale) and its unique gingerolbiosynthetic pathway
该工作由重庆文理学院牵头,联合长江大学、西南大学和华大基因共同完成。李洪雷教授、吴林副教授、董照明副教授、姜玉松教授和姜三杰博士为论文的共同第一作者,刘奕清教授、夏庆友教授、简建波博士和邹勇副教授为论文的共同通讯作者。济南市第二农科院李承勇研究员、李庆芝高级工程师等参与了该研究。该研究得到了重庆文理学院生姜基因组重大专项、重庆市自然科学基金等项目的支持。
文章链接:
Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger
https://wwwnaturecom/articles/s41438-021-00599-8
Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway
https://wwwnaturecom/articles/s41438-021-00627-7
实际上,真正可用的基因只占人类基因组的3%,其余97%都是非编码序列,但是非编码序列也是可以表达的,表达产物就是非编码RNA(ncRNA)。
人类基因组中约93%的DNA是能转录为RNA的,其中2%是mRNA,98%是非编码RNA(ncRNA)。
RNA转录本分类
非编码RNA(ncRNA) 可以分为 调控RNA 和 管家RNA 两种。
调控RNA
miRNA: 微RNA (microRNA),18-25 nt( nt =nucleotide核糖核苷酸),单链
siRNA: 小干扰RNA (smallinterfering RNA),21-23 nt,双链
piRNA: piwi相互作用RNA (piwi-interacting RNA),26-35 nt,单链,这是动物生殖细胞所特有的小RNA,转座子沉默
lncRNA: 长非编码RNA (long non-coding RNA),>500 nt,比如Xist、PCGEM1等
管家RNA
rRNA: 核糖体RNA (ribosome RNA),26-35 nt,单链,是构成核糖体的组成成分,有多种不同的大小,如28S、18S、5S等
tRNA: 转运RNA (transfer RNA),70-80 nt,单链,三叶草构型,在蛋白质合成过程中起到转运氨基酸的作用,对于不同的物种,其rRNA分子的大小和种类都可能有所不同
snoRNA: 核仁小RNA (smallnucleolar RNA)
sacRNA: Small Cajal body-specific RNAs,是一种特殊的核仁小RNA,专一位于卡哈尔体(Cajal body)上,可以催化核糖核蛋白的生成
Telomerase RNA: 端粒酶RNA,是端粒酶的一部分,在端粒延伸过程中,作为端粒继续延伸的模板,由端粒酶催化实现端粒的延长
热门ncRNA——lncRNA、miRNA、circleRNA
目前研究最热门的ncRNA主要集中在lncRNA、miRNA、circleRNA三种。
IncRNA : lncRNA可通过折叠形成一定的空间结构与多种蛋白互作,也可通过碱基互补配对与其它核酸进行识别,这种识别又可将蛋白引导至特定序列位点,这些特点使得lncRNA在 发育和癌症 中的功能发挥得更加丰富。
lncRNA
作为RNA诱饵,结合转录因子,干扰其与基因promoter区域的结合,从而调控转录;作为分子海绵,吸附miRNA,抑制其与mRNA的结合,使得mRNA免于降解;作为蛋白互作的支架或桥梁,影响蛋白多聚物的形成,调控蛋白活性;招募染色质修饰因子,改变染色质的修饰水平,从而影响基因的转录和表达;与mRNA配对结合,抑制翻译;与mRNA配对结合,影响剪切;与mRNA配对结合,影响mRNA的稳定性。
circleRNA : circRNA分子呈封闭环状结构,无游离5‘和3’末端,不易被核酸外切酶RNaseR降解,比线性RNA更加稳定。 长度约200-2000bp,主要长度分布在500bp左右。
circleRNA
circleRNA大多数来源于外显子,少部分由内含子直接环化形成。其形成有四种模式: 套索驱动的环化、内含子碱基配对驱动环化、单个内含子成环、RNA结合蛋白驱动环化。
它可以通过竞争性结合miRNA、线性亲本基因的转录,甚至是编码多肽来发挥生物学功能。
circRNA作为ceRNA(内源竞争性RNA)竞争性结合miRNA;circRNA结合RNA结合蛋白(RBP)以形成RNA-蛋白复合物(RPC),调控线性亲本基因的转录;编码功能,circRNA具有内部核糖体进入位点(IRES),能合成多肽。
miRNA : miRNA一类由内源基因编码的非编码单链RNA分子,其长度约为19-25nt,其在肿瘤发生发展、生物发育、器官形成、病毒防御、表观调控以及代谢等方面起着极其重要的调控作用。
miRNA
RNA-seq结果解读
目前在生信里面应用最为广泛和成熟的RNA-seq技术就是转录组测序,狭义上也就是指的全部mRNA的表达水平,而RNA-seq完成后会生成很多的数据和,如火山图、韦恩图、聚类热图等。
火山图(Volcano Plot) 显示了两个重要的指标: fold change和校正后的p value,利用t检验分析出两样本间显著差异表达的基因后,以log2(fold change)为横坐标,以t检验显著性检验p值的负对数-log10(adj p-value)为纵坐标。
红色代表基因上调,绿色代表基因下调。
横轴: fold change代表检测样本对对照样本(TS vs CK)的RNA表达量倍数(商)。图中当横轴为1时,代表表达量为2倍关系(log2(2)=1)。
纵轴: padj就是adj p-value(调整p值),代表差异是否具有显著性,统计学中,以p<005代表差异具备显著性,由于-log10(005)=13,所以图示中13以上的点代表差异具有显著性。
韦恩图(Vene PLot) 用于显示元素集合重叠区域的图示。
在RNA-seq项目中,每个椭圆表示一个比较集合(处理组 vs 对照组)中的差异基因,椭圆重叠区域的数字表示对应的多个比较集合之间的共有差异基因个数。如图示,集合A、B、C、D共有差异基因有44个。
聚类热图(Clustered HeatMap) 可用于判断不同实验条件下差异基因的表达模式,热力值表示该点的基因表达。
红色: 表示基因表达水平高;蓝色: 表示基因表达水平低。
横轴代表不同的实验处理条件/样本(cell),纵轴代表差异基因(gene),并且 差异基因 已经进行了聚类分组, 表达模式 或 相近 的差异基因会被聚类为一组。
欢迎分享,转载请注明来源:品搜搜测评网