高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。
基本介绍 中文名 :高分子材料 外文名 :macromolecular material 分类,高分子材料按来源分类,高分子材料按套用分类,高分子材料按套用功能分类,按高分子主链结构分类,其它分类,特征,名称和用途,塑胶,橡胶,纤维,涂料,黏合剂,新型高分子材料,高分子分离膜,高分子磁性材料,光功能高分子材料,高分子复合材料,合成加工, 分类 高分子材料按来源分类 高分子材料按来源分为天然高分子材料和合成高分子材料。 天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑胶、合成橡胶和合成纤维三大合成材料,此外还包括胶黏剂、涂料以及各种功能性高分子材料。合成高分子材料具有天然高分子材料所没有的或较为优越的性能——较小的密度、较高的力学、耐磨性、耐腐蚀性、电绝缘性等。 高分子材料按套用分类 高分子材料按特性分为橡胶、纤维、塑胶、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。 ③塑胶是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变数等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑胶和热塑性塑胶;按用途又分为通用塑胶和工程塑胶。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。套用较多的是合成胶粘剂。 ⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。 ⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑胶,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑胶。 高分子材料按套用功能分类 按照材料套用功能分类,高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类。通用高分子材料指能够大规模工业化生产,已普遍套用于建筑、交通运输、农业、电气电子工业等国民经济主要领域和人们日常生活的高分子材料。这其中又分为塑胶、橡胶、纤维、粘合剂、涂料等不同类型。特种高分子材料主要是一类具有优良机械强度和耐热性能的高分子材料,如聚碳酸酯、聚酰亚胺等材料,已广泛套用于工程材料上。功能高分子材料是指具有特定的功能作用,可做功能材料使用的高分子化合物,包括功能性分离膜、导电材料、医用高分子材料、液晶高分子材料等。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如: PP、PE、PVC ②杂链高聚物:分子主链由C、O、N、P等原子构成。如:聚酰胺、聚酯、矽油 ③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:矽橡胶 其它分类 按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。 按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。 特征 一是分子量大(一般在10000以上),二是分子量分布具有多分散性。即高分子化合物与小分子不同,它在聚合过程后变成了不同分子量大小的许多高聚物的混合物。我们所说的某一高分子的分子量其实都是它的一种平均的分子量,当然计算平均分子量也以不同的权重方式分为了数均分子量、粘均分子量、重均分子量等。而小分子的分子量固定,都由确定分子量大小的分子组成。这是高聚物与小分子一个特征区别。 名称和用途 塑胶 塑胶是指以聚合物为主要成分,在一定条件(温度、压力等)下可塑成一定形状并且在常温下保持其形状不变的材料。 塑胶根据加热后的情况又可分为热塑性塑胶和热固性塑胶。 加热后软化,形成高分子熔体的塑胶成为热塑性塑胶。主要的热塑性塑胶有聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、尼龙、聚碳酸酯、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯等。加热后固化,形成交联的不熔结构的塑胶称为热固性塑胶。常见的有环氧树脂, 酚醛塑胶, 聚酰亚胺,三聚氰氨甲醛树脂等。塑胶的加工方法包括注射,挤出,膜压,热压,吹塑等等。 橡胶 橡胶又可以分为天然橡胶和合成橡胶。天然橡胶的主要成分是聚异戊二烯。合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶、丙烯酸酯橡胶、聚氨酯橡胶、矽橡胶、氟橡胶等等。 纤维 纤维是高分子材料的另外一个重要套用。常见的合成纤维包括尼龙、涤纶、腈纶聚酯纤维、芳纶、丙纶纤维等。 涂料 涂料是涂附在工业或日用产品表面起美观或这保护作用的一层高分子材料、常用的工业涂料有环氧树脂,聚氨酯等。 高分子材料 黏合剂 黏和剂是另外一类重要的高分子材料。人类在很久以前就开始使用淀粉,树胶等天然高分子材料做黏合剂。现代黏合剂通过其使用方式可以分为聚合型,如环氧树脂;热融型,如尼龙,聚乙烯;加压型,如天然橡胶;水溶型,如淀粉。 新型高分子材料 高分子材料包括塑胶、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑胶、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前已大规模生产的还是只能在寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机矽等。膜的形式也有多种,一般用的是平膜和空中纤维。推广套用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用气体分离膜从空气中富集氧可大大提高氧气回收率等。 高分子磁性材料 高分子磁性材料,是人类在不断开拓磁与高分子聚合物(合成树脂、橡胶)的新套用领域的同时,而赋予磁与高分子的传统套用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑胶或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点,而越来越受到人们的关注。 高分子材料 高分子磁性材料主要可分为两大类,即结构型和复合型。所谓结构型是指并不添加无机类磁粉而高分子中制成的磁性体。目前具有实用价值的主要是复合型。 光功能高分子材料 所谓光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑胶(如塑胶透镜、接触眼镜等)、光转换系统材料、光显示用材料、光导电用材料、光合作用材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种透镜、棱镜等;利用高分子材料曲线传播特性,又可以开发出非线性光学元件,如塑胶光导纤维、塑胶石英复合光导纤维等;而先进的信息储存元件兴盘的基本材料就是高性能的有机玻璃和聚碳酸脂。此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。 高分子复合材料 高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质,根据套用目的,选取高分子材料和其他具有特殊性质的材料,制成满足需要的复合材料。高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化矽晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。 合成加工 高分子材料在加工之前,要先进行合成,把单体合成为聚合物进行造粒,然后才进行熔融加工。高分子材料的合成方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合和气相聚合等。这其中引发剂起了很重要的作用,偶氮引发剂和过氧类引发剂都是常用的引发剂,高分子材料助剂往往对高分子材料性能的改进和成本的降低也有很明显的作用。 加工工艺高分子材料的加工成型不是单纯的物理过程,而是决定高分子材料最终结构和性能的重要环节。除胶粘剂、涂料一般无需加工成形而可直接使用外、橡胶、纤维、塑胶等通常须用相应的成形方法加工成制品。一般塑胶制品常用的成形方法有挤出、注射、压延、吹塑、模压或传递模塑等。橡胶制品有塑炼、混炼、压延或挤出等成形工序。纤维有纺丝溶体制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。 在成型过程中,聚合物有可能受温度、压强、应力及作用时间等变化的影响,导致高分子降解、交联以及其他化学反应,使聚合物的聚集态结构和化学结构发生变化。因此加工过程不仅决定高分子材料制品的外观形状和质量,而且对材料超分子结构和织态结构甚至链结构有重要影响。
分类: 教育/学业/考试 >> 高考
解析:
化学成分就是指某一混合物中,各种化学物质的分子式以及该分子构成的化学物质在该混合物中的含量。
粉煤灰的 70%以上通常都是由 SiO2、Al2O3和 Fe2O3( Fe2O3+ Fe3O4) 组成的,典型的粉煤灰中还含有 CaO、MgO、TiO2、K2O、Na2O 和 SO3、P2O5等氧化物,粉煤灰的经验式为 Si1 0Al0 45Ca0 51Na0 047Fe0 039Mg0 020K0 013Ti0 011( Iyer,2001) 。
我国和世界其他国家或地区粉煤灰的化学成分列于表 3 4。从表中可以看出,我国 35个火电厂粉煤灰的统计结果与 100 多个火电厂 365 个粉煤灰样品统计所得结果并没有太大差别 ( 刘巽伯等,1995; 袁春林等,1998) ,只是后者的分析结果更为全面,还包括有1 29% 的 TiO2,0 06% 的 MnO 和 0 28% 的 P2O5。与其他国家相比,除高钙粉煤灰 ( CaO >10% ) 外,主要氧化物含量基本相 近,均 表现 出 高 硅低 铝特征,Al2O3/ SiO2质量比在0 36 ~ 0 59 之间,平均为 0 49,若除去高钙粉煤灰则 Al2O3/ SiO2质量比为 0 51。我们曾对 15 个燃煤电厂粉煤灰的化学组成做过统计 ( 邵龙义等,2004) ,得到 Al2O3的含量为15 16% ~ 36 10% , 平 均 26 10% ; SiO2的含量为 43 9% ~ 60 12%,平均 51 54%;Al2O3/ SiO2质量比为 0 30 ~0 74,平均为 0 51。
表 3 4 准格尔电厂粉煤灰与其他国家或地区统计的粉煤灰的化学成分对比 ( %)
资料来源: a 刘巽伯等,1995; b 袁春林等,1998; c 庆承松等,2003; d Swaine 等,1995; e Massazza 等,1998。
准格尔电厂粉煤灰的化学成分 ( 表 3 4) 与首钢电厂以及其他国家或地区粉煤灰的化学成分有很大不同,特别是在 Al2O3和 SiO2含量上。准格尔电厂粉煤灰明显具有高铝低硅特征,Al2O3/ SiO2质量比高达 1 5,是一般粉煤灰的 3 倍左右,并且粉煤灰中 Fe2O3的含量也明显低于其他各国的平均值,仅有 1 95%。CaO 含量只有 4 22%,按照 CaO 含量小于 10%划分,应属低钙粉煤灰。粉煤灰中其他氧化物的含量也并不高,MgO、K2O 和Na2O 的含量均在 1% 以下。另外,准格尔电厂粉煤灰中还含有 2 22% 的 TiO2。通常而言,TiO2也是粉煤灰中的常见氧化物,但其含量一般不高,粉煤灰中的钛主要来自煤中的金红石或钛铁矿。
美国材料与测试协会 ( ASTM) 根据粉煤灰中氧化物的含量将粉煤灰分为两大类,即C 类灰和 F 类灰 ( ACAA,2003) ,C 类灰中 SiO2+ Al2O3+ Fe2O3≥50%,F 类灰中 SiO2+Al2O3+ Fe2O3≥70%; C 类灰通常来源于亚烟煤,主要含硫铝酸钙玻璃体以及石英、铝酸三钙和游离石灰 ( CaO) ,C 类灰也被称为高钙粉煤灰,因为它通常含有超过 20% 的 CaO。F 类粉煤灰通常来源于烟煤或无烟煤,主要含硅铝酸盐玻璃体,石英、莫来石、磁铁矿也有存在,F 类粉煤灰或称为低钙粉煤灰,CaO 含量不超过 10%。
按照 ASTM 的分类,准格尔电厂粉煤灰中的 SiO2+ Al2O3+ Fe2O3= 89 71% ,≥70% ;CaO = 4 22% , < 10% ,应属 F 类粉煤灰,但这一粉煤灰并非来自于烟煤或无烟煤,而是来自于亚烟煤 ( 长焰煤) ,这种情况并不多见。
Roy 等 ( 1982) 首先将粉煤灰中的氧化物分为 3 类: 硅铝质氧化物 ( SiO2+ Al2O3+TiO2) ; 钙质氧化物 ( CaO + MgO + K2O + Na2O) 和铁质氧化物 ( Fe2O3+ SO3) ,然后根据粉煤灰中这 3 类氧化物的比例将粉煤灰分为七大类,即硅铝型、铁硅型、铁型、铁钙硅型、钙质型、钙硅铝型和中间型 ( 图 3 6) 。不过在目前情况下这样划分粉煤灰的类别似乎过于细化,通过这种分类方法可以看出,粉煤灰中不同氧化物的相对比例变化是非常大的。准格尔电厂粉煤灰中硅铝质氧化物含量为 89 98%,钙质氧化物含量为 5 56%,铁质氧化物含量为 2 82%,按照 Roy 等的三角图解分类法,准格尔电厂粉煤灰应属于硅铝型粉煤灰 ( SiO2+ Al2O3+ TiO2> 88% ) 。
图 3 6 粉煤灰分类图( 左图据 Roy 等,1982; 右图据 Vassilev 等,2007)
Vassilev 等 ( 2007) 同样根据粉煤灰化学组成采用三单元分类法,但单元氧化物组合与 Roy 等 ( 1982) 不同,Vassilev 等采用了 ( SiO2+ Al2O3+ K2O + TiO2+ P2O5) 、 ( CaO +MgO + SO3+ Na2O + MnO) 和 ( Fe2O3) ,根据化学组成将粉煤灰划分为硅铝型、钙硅铝型、铁硅铝型、铁钙硅铝型 4 类 ( 图 3 6) 。按此分类,准格尔电厂粉煤灰仍然属于硅铝型粉煤灰。
由此可以看出,上述分类方法并不能真正反映准格尔电厂粉煤灰的高铝、低硅特征,因为这些分类均将粉煤灰中的主组分 SiO2和 Al2O3结合作为其中一个单元划分。
根据粉煤灰的酸性模量 ,可将粉煤灰分为强碱性 ( < 1) 、碱性 ( 1 ~2) 、中性 ( 2 ~ 3) 、弱酸性 ( 3 ~ 10) 、酸性 ( 10 ~ 20) 和强酸性 ( > 20) 6 种( 钱觉时,2002) 。求得准格尔电厂粉煤灰的酸性模量为 4 2,属于弱酸性粉煤灰 ( 3 ~10) 。按照 Vassilev 等 ( 2007) 的三角图分类方案划分,准格尔电厂粉煤灰应属于高酸性粉煤灰。
通常研究粉煤灰的化学组成多采用 SiO2-Al2O3-CaO 的三元系统来分析。粉煤灰与同属于此三元系统的高炉矿渣、火山灰、硅酸盐水泥、玻璃等都比较类似。但粉煤灰的化学组成因受多种因素的影响波动很大,不同地区的粉煤灰,甚至同一电厂的粉煤灰,因为燃煤来源和煤质的变化,其化学组成差异也很大。表现在 SiO2-Al2O3-CaO 三元系统图中,粉煤灰的分布区域比高炉矿渣等要宽广得多。将准格尔电厂粉煤灰的化学组成绘在 SiO2-Al2O3-CaO 三元系统图中可以看出,该数据点的位置并未处于已知的区域 ( 图3 7a) 和常见的粉煤灰化学组成范围内 ( 图 3 7b) ,而是处于一个相对独立的区域 ( 图3 7) 。
图 3 7 SiO2-Al2O3-CaO 三元系统图
我们将准格尔电厂长焰煤 ( 亚烟煤) 粉煤灰采用常规化学分析、能谱面分析 ( 1 56 ×105μm2) 、能谱点分析 ( 2、3、6、7 号样品共 166 个数据点) 和煤样高温灰化 ( 810℃,1 5 h) 后 ICP-AES 法分析,测得结果与美国亚烟煤的煤灰化学组成范围 ( 表 3 5) 相比,可以发现,各种分析方法中,除 Al2O3结果外,均未超出美国公布的亚烟煤煤灰化学组成范围。但从这些分析数据也可以看出,不同分析方法所得结果有所偏差,特别是能谱点分析所得的平均值误差最大,这是由于能谱点分析在选择分析位置时存在明显的人为因素。能谱面分析时所选微区范围一般有限,样品分析得出的数据代表性相对较差。所以,对粉煤灰常量元素分析时以选择常规化学分析方法为宜。
表 3 5 不同方法测得的准格尔电厂粉煤灰化学成分及其与其他资料之对比 ( %)
资料来源: a 王晓林等,2000; b Wesche,1991; c 刘巽伯等,1995。
由于电厂燃煤的燃烧温度 ( 1200 ~ 1700℃) 远远高于煤样分析时高温灰化的温度( 800℃) ,所以造成粉煤灰的氧化物含量通常要高于煤样灰化所得结果,高温燃烧常常使得元素更加富集,但也存在少数挥发性元素在高温下挥发导致含量相对下降的可能性。再者,煤样分析所得结果基本上包括了煤中所有元素,而粉煤灰的化学成分分析中通常是排除了底灰、结渣和沾污三部分,这也是造成煤样分析结果与粉煤灰不一致的重要原因之一。
根据袁春林等 ( 1998) 对静电除尘粉煤灰的研究成果,粉煤灰的主要造岩元素氧化物平均值与煤的平均值基本一致,最大误差为 3 6% ( 铁) ,最小仅为 0 07%,说明煤经过燃烧形成粉煤灰的过程中,造岩元素的增减不很明显。对于铁含量变化的解释是数据采用总铁 ( FeO + Fe2O3) 表示,粉煤灰中铁主要以 Fe3 +形式存在,即以 Fe2O3( 赤铁矿)为主,而煤中 Fe2 +在全部铁中所占比例要高得多,即以 Fe3O4( 磁铁矿) 为主,Fe3O4与Fe2O3的分子量原子单位比为 0 967,即相差 3 3%,如果加上层状矿物中以 Fe2 +形式存在的铁,此差值还要大些。故粉煤灰的主要元素平均含量与煤中杂质的主要元素平均含量基本一致。
整体而言,准格尔电厂粉煤灰的化学成分与煤样灰化所得化学成分大同小异,都具有高铝、低硅特征。其中 SiO2含量误差较大,为 7 36%,这可能与高温下 SiO2的分解挥发有关。Miller 等根据 SiO2与碳共存进行加热反应的结果指出,SiO2在高于 1300℃时按下式分解 ( 任国斌等,1988) :
SiO2+ C→SiO ( 气) + CO ( 气)
Al2O3的含量误差不大,为 3 18%,Fe2O3和 CaO 的含量误差均不超过 2 5%,MgO、K2O 和 Na2O 的含量误差均在 0 4% 以下。当然,这其中还包括测试方法不同而造成的误差。总体而言,准格尔电厂煤样灰成分与粉煤灰的化学成分差异不大,但将准格尔电厂粉煤灰的化学成分与美国典型的 C 类灰和 F 类灰相比,存在明显不同,Al2O3含量分别高出36% 和 27% ,SiO2含量分别降低 4 86% 和 19 86%。产生这种特殊粉煤灰的原因,同样与煤中富含高岭石和勃姆石矿物以及缺乏常见石英矿物有关。
关于高铝粉煤灰的划分方法目前没有统一的定义。国内有人提出按照粉煤灰中 Al2O3≥30% 划分,据此统计 ( 1986 年资料) ,超过这一数值的粉煤灰占 18 3% ,约 800 × 104t( 张A,2001) 。根据世界各国粉煤灰化学组成的平均含量 ( 表 3 4) 和组成范围 ( 表3 5) ,参考Ⅲ级高铝黏土 ( Al2O3≥50%) 、高铝质耐火材料 ( Al2O3≥48%) 、烧结莫来石 M45 ( Al2O3≥43%) 标准 ( YB/T5267—2005) 和黏土质耐火材料 ( 一般要求 Al2O3≥36% ) 的划分方法,作者认为高铝粉煤灰的划分将界限定在 Al2O3≥35% 较为适宜,利用粉煤灰制备硅铝铁 ( 钡) 合金成分的技术指标也要求铝含量大于 35%。但无论怎样划分,准格尔电厂粉煤灰都属于高铝粉煤灰。
阿拉伯糖有L的和D的之分,但是自然界存在最普遍的是L-阿拉伯糖。广泛存在与植物果皮秸秆玉米芯之中。
分子式:C5H10O5
分子量:15013
CAS号码:5328-37-0
1小数化成分数,原来有几位小数,其实就是在1的后面写几个零作(分母),把原来的小数去掉(0和小数点所得的数)作分子,化成分数后,能(约分)的要(约分)。
2分母是10,100,1000的分数化小数,可以直接去掉(分母),看分母中1后面有几个(0),就在分子中从最后一位起向(左)数出(几位),点上(小数点)。
在人类社会5000年发展的漫长岁月中,人们虽然天天与天然高分子材料打交道,但是对它们的科学本性却一无所知,不知道棉、麻、丝、木材、淀粉等等都是天然高分子化合物。直到20世纪初期,经过施陶丁格等一些化学家们的共同努力,才彻底改变了这个局面。 高分子化学是高分子科学的三大领域之一,它包括高分子化学、高分子物理和高分子工艺。高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。
高分子化学包括塑料、合成纤维、合成橡胶三大领域。如今,建立了颇具规模的高分子合成工业,生产出五彩缤纷的塑料、美观耐用的合成纤维、性能优异的合成橡胶。高分子合成材料,金属材料、和无机非金属材料并列构成材料世界的三大支柱。 合成高分子的历史不过90年,所以高分子化学真正成为一门科学今年整整80年,但它的发展非常迅速。目前它的内容已超出化学范围,因此,现在常用高分子科学这一名词来更合逻辑地称呼这门学科。狭义的高分子化学,则是指高分子合成和高分子化学反应。
人类实际上从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。
后来,经过研究知道,人工合成的高分子和那些天然存在的高分子,在结构、性能等方面都具有共同性,因此,就都叫做高分子化合物。工业上或实验室中合成出来的称为合成高分子,一般所说的高分子,大都指合成高分子,天然存在的高分子简称天然高分子。
顾名思义,高分子的分子内含有非常多的原子,以化学键相连接,因而分子量都很大。但这还不是充足的条件,高分子的分子结构,还必须是以接合式样相同的原子集团作为基本链节(或称为重复单元)。许多基本链节重复地以化学键连接成为线型结构的巨大分子,称为线型高分子。有时线型结构还可通过分枝、交联、镶嵌、环化,形成多种类型的高分子。其中以若干线型高分子,用若干链段连接在一起,成为巨大的交联分子的称为体型高分子。
从高分子的合成方法可以知道,合成高分子的化学反应,可以随机地开始和停止。因此,合成高分子是长短、大小不同的高分子的混合物。与分子形状、大小完全一样的一般小分子化合物不同,高分子的分子量只是平均值,称为平均分子量。
决定高分子性能的,不仅是平均分子量,还有分子量分布,即各种分子量的分子的分布情况。从其分布中可以看出,在这些长长短短的高分子的混合物中,是较长的多还是较短的多,或者中等长短的多。
高分子具有重复链节结构这一科学概念,是德国著名化学家H施陶丁格
(Hermann Staudinger 1881—1965)在1922年提出的,但没有得到当时化学界一些人的赞同。直到30年代初,通过了多次实践,这一概念才被广泛承认。正确概念一经成立,就使高分子有飞跃的发展。当时链式反应理论已经成熟,有机自由基化学也取得很大的成就。三者的结合,使高分子合成有了比较方便可行的方法。
实践证明,许多烯类化合物,经过有机自由基的引发,就能进行链式反应,迅速地形成高分子。由20世纪30年代初期到40年代初期,许多现在的通用高分子品种,都已按此方法投入工业生产。在1935年卡罗瑟斯又发现用缩聚方法合成高分子,研制成功聚酰胺,人们称为尼龙。后来,为了合理的加工和有效的应用,高分子结构和性能的研究工作逐渐开展,使高分子成为广泛应用的材料。同时,一门新兴的综合性学科——高分子科学——从40年代下半期开始,蓬勃地发展起来。
高分子科学可以分为高分子化学(狭义的)、高分子物理和高分子工艺学三部分。高分子化学又分为高分子合成、高分子化学反应和高分子物理化学。高分子物理研究高聚物的聚集态结构和本体性能。高分子工艺学又分为高聚物加工成型和高聚物应用。
高分子虽然分子量很高,但是它们所具有的官能团,仍然与一般小分子有机化合物有一样的反应性能。但其反应性能受两种特有因素的影响:高分子是长链结构,这个长链是曲曲折折的蜷曲形。有规则的蜷曲(折叠)形成晶态,无规则的蜷曲形成非晶态;高分子的分子与分子堆砌在一起。有规则的堆砌形成规整的晶态排列;无规则的堆砌形成非晶态。规整结构中分子排列紧密,试剂不易侵入,官能团不易起反应;不规整结构中分子排列疏松,试剂容易侵入,官能团容易起反应。
天然高分子的化学转化,早在19世纪就为人们所研究和利用。1845年舍恩拜因就发现纤维素可以硝化,成为硝酸纤维素。1865年许岑贝格尔把纤维素乙酰化成为醋酸纤维素。粘胶人造丝的生产也是通过纤维素的化学变化来实现的。
高分子的化学反应,有些是破坏性的,例如高分子光降解、高分子热降解、高分子氧化等。它们使高分子材料老化,性能变坏,以致最后不能使用。但不少反应是有用的,甚至是重要的高分子合成方法,例如橡胶硫化成为具有弹性的橡皮;纤维素黄化,制成粘胶纤维;聚乙酸乙烯酯先水解成聚乙烯醇,再与甲醛缩合,纺成的纤维即维轮;高分子先转化成自由基,再与另一单体形成接枝共聚物;两种高分子链段用化学方法连接起来,成为嵌段共聚物。此外,还可以把某些元素或基团先接到高分子上去,再进行化学反应,反应后还可解脱,以完成某些分离、分解和合成工作,例如高子交换树脂、固定化酶、多肽、某些激素甚至蛋白质的合成等等。
高分子链结构包括链节的化学结构,链节与链节连接的化学异构和立体化学异构、共聚物的链节序列、分子量及分子量分布,以及分子链的分支和交联结构。
在适当情况下,这些结构相同的链节,正如许多相同的小分子可以整齐地排列起来成为晶体一样,也可以局部折叠起来成为片状结晶态,称为片晶。片晶又可以堆砌成球状,称为球晶。在高分子的分子与分子之间,相同的链节也可排列成为片晶,片晶再堆砌成为球晶或其他晶态;那些未折叠起来的一部分分子是非晶态的。非晶态部分也有一定的结构。小分子化合物,要么是结晶的,要么是非晶态的;而高分子化合物,则可以一部分是晶态结构,另一部分是非晶态结构。
高分子链结构是一级结构;孤立高分子链,即稀溶液中高分子的形态,如无规线团、螺旋、双螺旋、刚性棒或椭球等是二级结构;三级结构指高聚物分子聚集态结构,即分子链与分子链之间的堆砌。聚集态结构随着加工成型方法的不同而有所不同。具有聚集态结构的高分子,称为高聚物。
多数线型高分子,可以在相应的溶剂中溶解,形成溶液。高分子溶液是真溶液,而不是以前所认为的胶体溶液。高分子是长链结构,在流动时能相互阻滞,因此高分子溶液是粘稠的。一般情况下,分子链愈长,粘度愈大。当光束通过高分子溶液时,由于高分子比较大,可以发生光的散射,分子愈大,散射愈强。
高分子远比溶剂分子重,在超高速离心下,高分子的移动比溶剂分子快,扩散比溶剂分子慢。分子量愈大,这些区别愈明显。利用这些高分子溶液性能,可以测定高分子的分子量。研究高分子溶液,除了能测定分子量及其分布以外,还可从溶液的各种性质推测高分子的形态结构等。
高分子与小分子不同,具有强度、模量,以及粘弹、疲劳、松弛等力学性能,还具有透光、保温、隔音、电阻等光学、热学、声学、电学等物理性能,由于具有这些性能,高聚物可作为多种材料应用。高聚物的结构与加工成型的方法有关。因此,要取得高聚物的优良性能,必须采用适当的加工成型方式,使它形成适当的结构。例如,成纤的高聚物,在纺丝以后必须在特定温度下进行牵伸取向,才能达到较高强度。
高聚物作为材料使用,主要可分塑料、纤维和橡胶等,都需要加工成一定的形状方可使用。此外,用做分离、分析材料的离子交换树脂,在聚合过程中就可制成可使用的球形颗粒;用做油漆涂料的高聚物,只须溶在适当溶剂中,就可使用,无须加工成型。
高分子生产的迅速发展,说明了社会对它的需要量的迅速增加。高分子材料首先用作绝缘材料,用量至今还很大,特别是新型高绝缘材料。例如涤纶薄膜远比云母片优越;硅漆等用作电线绝纺漆,与纱包绝缘线不可相提并论。由于种种新型、优异的高分子介电材料的出现,电子工业以及计算机、遥感等新技术才能建立和发展起来。
高分子作为结构材料,在代替木材、金属、陶瓷、玻璃等方面的应用日新月异。在农业,工业和日常用途上,它的优点很多,如质轻、不腐、不蚀、色彩绚丽等,用于机械零件、车船材料、工业管道容器、农用薄膜、包装用瓶、盒、纸,建筑用板材、管材、棒材等等,不但价廉物美,而且拼装方便。还可用于医疗器械,家用器具,文化、体育、娱乐用品,儿童玩具等,大大丰富和美化了人们的生活。
合成纤维的优越性,如轻柔、不绉、强韧、挺括、不霉等,也为天然纤维棉、毛、丝、麻等所不及。尤其重要的是它们不与粮食争地,一个工厂生产的合成纤维,可以相当上百万亩农田所能生产的天然纤维。天然橡胶的生产,受地区的限制,产量也不能适应日益增长的要求。但合成橡胶不受这种限制,而且其各个品种各有比天然橡胶优良之处。
一般认为高分子材料强度不高、耐热不好,这是从常见的塑料得到的印象。现在最强韧的材料,不是钢,不是钍,不是铍,而是一种用碳纤维和环氧树脂复合而成的增强塑料。耐热高分子,已经可以长期在300摄氏度下使用。
特别应当提起的是,在航天技术中,火箭或人造卫星壳体从外部空间回到大气层时,速度高,表面温度可达5000~10000摄氏度,没有一种天然材料或金属材料能经受这种高温,但增强塑料可以胜任,因为它遇热燃烧分解,放出大量挥发气体,吸收大量热能,使温度不致过高。同时,塑料不传热,仍可保持壳体内部的人员和仪器正常工作和生活所需要的温度。好的烧蚀材料,外层只损坏了3~4厘米,即可保全内部,完成回地任务。
不过高分子材料也有不少弱点,必须开展研究加以克服。比如易燃烧,大量使用高分子材料时,防火是一个大问题,必须使高分子不易燃烧,才能安全使用;易老化,不经久。用作建筑材料,要求至少有几十年的寿命;用于其他方面,也须有耐久性。大量使用高分子材料时,作为废物扔掉的高分子垃圾,不被水溶解和风化,不受细菌腐蚀,如不处理就会越积越多,成为严重公害。必须设法使高分子材料在使用后能适时分解消失。
欢迎分享,转载请注明来源:品搜搜测评网