呼酸?代酸?呼碱?代碱?还傻傻分不清楚?

呼酸?代酸?呼碱?代碱?还傻傻分不清楚?,第1张

三步法包括:

第一步,病人是否存在酸中毒或碱中毒?

第二步,酸/碱中毒是呼吸性还是代谢性?

第三步,如果是呼吸性酸/碱中毒,是单纯呼吸因素,还是存在代谢成分?

第一步,看PH值

正常值为74±005。PH≤735为酸中毒,PH≥745为碱中毒。

第二步看PH值和PCO2改变的方向

同向改变(PCO2增加,PH值也升高,反之亦然)为代谢性,异向改变为呼吸性。

第三步,如果是呼吸性的,再看PH值和PCO2改变的比例

正常PCO2为40±5mmHg,单纯呼吸性酸/碱中毒,PCO2每改变10mmHg,则PH值反方向改变008±002。

例如:

如果PCO2是30mmHg(降低10mmHg),那么PH值应该是748(增加008);

如果PCO2为60mmHg(增加20mmHg),则PH值应为724(降低008×2)。

如果不符合这一比例,表明还存在第二种因素,即代谢因素。这时,第三步就应比较理论上的PH值与实际PH值

(注:实际PH值是实测的血液PH值,理论PH值上面公式计算出来的PH值)

如果实际PH值低于理论PH值,说明同时存在有代谢性酸中毒,

如果实际PH值高于理论PH值,则说明同时有代谢性碱中毒。

需注意,根据公式推算出来的PH值,可以有±002的波动。

现做现卖:

例1:病人的PH值为758,PCO2为20mmHg,PO2为110mmHg。

分析:

第一步,PH值大于745,提示为碱中毒。

第二步,PCO2和PH值异向改变,表明为呼吸性。

第三步,PCO2降低20mmHg,PH值应升高2×008(±002)即为756±002,与实际PH值相符,因此该病人为单纯性呼吸性碱中毒。

结论: 此病人为单纯性呼吸性碱中毒。

例2: 病人的PH值为716,PCO2为70mmHg,PO2为80mmHg。

分析:

第一步,PH值小于735,提示为酸中毒。

第二步,PCO2和PH值异向改变,表明为呼吸性。

第三步,PCO2增加30mmHg,PH值应降低3×008(±002)即为716±002,而该病人的实际PH值恰好为716。

结论: 此病人为单纯性呼吸性酸中毒。

例3: 病人的PH值为750,PCO2为50mmHg,PO2为100mmHg。

分析:

第一步,PH值大于745,提示为碱中毒。

第二步,PCO2和PH值同向改变,表明为代谢性。

第三步,不用,因该病人不是呼吸性酸碱平衡失调。

结论: 此病人为代谢性碱中毒。

苏秘呼吸水乳是苏秘的明星产品之一,苏秘呼吸水乳的成分有变性乙醇、糖基海藻糖、水、孔雀石提取物、马齿苋提取物、乳酸杆菌茄花发酵产物滤液等,具有补水保湿、提亮肤色、软化角质、抗氧化等功效。

苏秘呼吸水乳是苏秘的明星产品之一,苏秘呼吸水乳的成分有变性乙醇、糖基海藻糖、水、孔雀石提取物、马齿苋提取物、乳酸杆菌茄花发酵产物滤液等,具有补水保湿、提亮肤色、软化角质、抗氧化等功效。

苏秘呼吸水乳成分

水,变性乙醇,双丙甘醇,1,2-己二醇,糖基海藻糖,甲基葡糖醇聚醚-20,泛醇,甘油,PEG-40氢化蓖麻油,丁二醇,孔雀石提取物,马齿苋提取物,乳酸杆菌茄花发酵产物滤液等。

爽肤水的特色成分

这款爽肤水的特色成分,来自数十种植物发酵产物,近年来,发酵产物成为大牌最爱,所蕴含的氨基酸和矿物质可以滋养肌肤,当中有机酸还有轻微祛角质的功效,可以光滑,提亮我们的肌肤。

爽肤水的功效

除了常规的醇类保湿,这款爽肤水还加入了海藻糖,B5,甲基葡糖醇聚醚-20等保湿成分,保湿做得不错,再加上酒精的加入,令其肤感清爽好吸收。这款爽肤在植物提取物上下足了功夫,数十种植物发酵产物以及植物活性成分,事实上,有些植物成分仅仅是微量,一方面是噱头,另一方面作为烟雾弹避免配方被仿。有博主推测过,这款爽肤水的植物提取物总体给料量在2%左右,已经达到起效浓度,即便不是什么高机能,在肌肤上还是看得到作用效果。当中多数提取物主打抗氧化功效,马齿苋提取物,药鼠尾草叶提取物舒缓抗炎,再配合植物发酵产物。总的来说,这款爽肤水起滋养肌肤,祛除老废角质,提亮肤色的功效。

爽肤水适合孕妇使用吗

这款爽肤水主打植物成分,发酵产物用了大量的醇类做防腐,这样省去防腐剂的做法,也降低了对肌肤的刺激性。产品的调香没有用香精,而是采用了天然精油提香,但是小林之前也说过,为了提取植物活性成分,在生产过程中会加入大量,有机溶剂帮助析出,提取精油也不例外,这样下来,植物提取物和精油成分中,就藏有许多我们无法预测的风险。最重要一点是,酒精排在在成分表二位,酒精有良好的的促渗透性,易挥发,可以提升清爽肤感和吸收快的假象。

以上是关于苏秘呼吸水乳成分的内容,消费者可以根据自己的肌肤状态和需求,参考上述关于苏秘呼吸水乳的相关内容,考虑是否选择并尝试苏秘呼吸水乳。倘若不知道自己适不适合,可以前往实体店体验一番。

一、概述

(一)呼吸系统的组成、结构和功能

1呼吸道

(1)鼻:保护呼吸道和肺

(2)咽:呼吸和消化的共同通道

(3)喉:是气体通道也是发音器官(注意会厌软骨的作用)

(4)气管和支气管:属于下呼吸道,分泌的粘液有益菌和抗病毒作用。

2肺:气体交换的主要场所。

(二)呼吸运动

(三)肺的通气量

二、学前儿童呼吸系统的特点

(一)呼吸器官的特点

1鼻腔:富有血管,没有鼻毛,易感染。

2咽:耳咽管较短,宽,平直。

3喉:喉腔狭窄,粘膜柔嫩,富有血管和淋巴。

4气管和支气管:管腔较狭窄,柔软、缺少弹性组织,较干燥,易发炎。

5肺:弹力组织发育差,血管丰富,肺泡量较少,易被粘液堵塞。

(二)呼吸运动的特点

1呼吸量少、频率快

2呼吸不均匀

三、学前儿童呼吸系统的保育要点

(一)培养良好的呼吸卫生习惯

(二)保持室内空气新鲜

(三)经常参加户外活动

(四)严防异物进入呼吸道

(五)保持正确的坐、立、行姿势

(六)保护声带

呼吸运动也称气体交换或呼吸,是指人和高等动物的机体同外界环境进行气体(主要为氧和二氧化碳)交换的整个过程。在人和高等动物有内呼吸与外呼吸之分。前者指组织细胞与体液之间的气体交换过程,后者指血液与外界空气之间的气体交换过程。一般所称呼吸系指外呼吸。外呼吸由胸廓的节律性扩大和缩小,以及由此引起的肺被动的扩张(吸气)、回缩(呼气)和歇息而实现。健康成年人安静时每分钟约16至18次,而小童每分钟约20至30次,每次吸入和呼出气体约各为500毫升。人在各种不同条件下其呼吸型式亦不同。以肋骨运动为主者称为“胸式呼吸”,以膈和腹壁肌运动为主者称为“腹式呼吸”。呼吸运动是改善呼吸功能,促进血液循环,减轻心脏负担的一种运动。常用的有一般呼吸运动、局部呼吸运动和专门呼吸运动三种。一般呼吸运动有单纯的练习、配合肢体躯干运动的呼吸等。局部呼吸是重点作用于某一侧或某一部分肺叶的呼吸练习。

生物体内的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳、尿酸或其他产物,并且释放出能量的总过程,叫做呼吸作用。呼吸作用,是生物体在细胞内将有机物氧化分解并产生能量的化学过程,是所有的动物和植物都具有的一项生命活动。生物的生命活动都需要消耗能量,这些能量来自生物体内糖类、脂类和蛋白质等的能量,具有十分重要的意义。

基本介绍 中文名 :呼吸作用 外文名 :Respiration 作用部位 :细胞质基质>线粒体基质>线粒体膜 分类 :有氧呼吸、无氧呼吸 基本资料,过程,意义,呼吸类型,有氧呼吸,无氧呼吸,区别,意义,呼吸作用,第一,第二,套用, 基本资料 总述 生物的生命活动都需要消耗能量,这些能量来自生物体内糖类、脂类和蛋白质等有机物的氧化分解。 生物体内 有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳、水或其他产物,并且释放出能量的总过程,叫做 呼吸作用 (又叫生物氧化)。 呼吸作用示意图 呼吸作用 ,是生物体细胞把有机物氧化分解并产生能量的化学过程,又称为 细胞呼吸 (Cellular respiration)。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核细胞中,线粒体是与呼吸作用最有关联的胞器,呼吸作用的几个关键性步骤都在其中进行。 呼吸作用是一种酶促氧化反应。虽名为氧化反应,不论有无氧气参与,都可称作呼吸作用(这是因为在化学上,有电子转移的反应过程,皆可称为氧化还原反应)。有氧气参与时的呼吸作用,称之为 有氧呼吸 ;没氧气参与的反应,则称为 无氧呼吸 有氧呼吸 同样多的有机化合物,进行无氧呼吸时,其产生的能量,比进行有氧呼吸时要少。有氧呼吸与无氧呼吸是细胞内不同的反应,与生物体没直接关系。即使是呼吸氧气的生物,其细胞内,也可以进行无氧呼吸。 呼吸作用的目的,是通过释放食物里的能量,以制造三磷酸腺苷(ATP),即细胞最主要的直接能量供应者。呼吸作用的过程,可以比拟为氢与氧的燃烧,但两者间最大分别是:呼吸作用透过一连串的反应步骤,一步步使食物中的能量放出,而非像燃烧般的一次性释放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂质的基本组成单位──葡萄糖、胺基酸和脂肪酸,被分解成更小的分子,透过数个步骤,将能量转移到还原性氢([H])(化合价为-1的氢)中。最后经过一连串的电子传递链,氢被氧化生成水;原本贮存在其中的能量,则转移到ATP分子上,供生命活动使用。 过程 植物的呼吸作用主要在细胞的线粒体中进行。有氧呼吸的全过程,可以分为三个阶段:第一个阶段(称为糖酵解),一个分子的葡萄糖分解成两个分子的丙酮酸,在分解的过程中产生少量的氢(用[H]表示),同时释放出少量的能量。这个阶段是在细胞质基质中进行的;第二个阶段(称为三羧酸循环或柠檬酸循环),丙酮酸经过一系列的反应,分解成二氧化碳和氢,同时释放出少量的能量。这个阶段是在线粒体基质中进行的;第三个阶段(呼吸电子传递链),前两个阶段产生的氢,经过一系列的反应,与氧结合而形成水,同时释放出大量的能量。这个阶段是在线粒体内膜中进行的。以上三个阶段中的各个化学反应是由不同的酶来催化的。在生物体内,1mol的葡萄糖在彻底氧化分解以后,共释放出大约26947kJ的能量,其中有9162kJ左右的能量储存在ATP中(30个ATP,1mol ATP储存3054kJ能量),其余的能量都以热能的形式散失了(呼吸作用产生的能量仅有34%转化为ATP)。 植物的呼吸作用 生物进行呼吸作用的主要形式是有氧呼吸。那么,生物在无氧条件下能不能进行呼吸作用呢?科学家通过研究发现,生物体内的细胞在无氧条件下能够进行另一类型的呼吸作用——无氧呼吸。 苹果储藏久了,为什么会有酒味?高等植物在水淹的情况下,可以进行短时间的无氧呼吸,将葡萄糖分解为酒精和二氧化碳,并且释放出少量的能量,以适应缺氧的环境条件。高等动物和人体在剧烈运动时,尽管呼吸运动和血液循环都大大加强了,但是仍然不能满足骨骼肌对氧的需要,这时骨骼肌内就会出现无氧呼吸。高等动物和人体的无氧呼吸产生乳酸。此外,还有一些高等植物的某些器官在进行无氧呼吸时也可以产生乳酸,如马铃薯块茎、甜菜块根等。 植物有氧呼吸过程中,中间产物丙酮酸必须进入线粒体才能被分解成CO2 无氧呼吸与有氧呼吸: 在远古时期,地球的大气中没有氧气,那时的微生物适应在无氧的条件下生活,所以这些微生物(专性厌氧微生物)体内缺乏氧化酶类,至今仍只能在无氧的条件下生活。随着地球上绿色植物的出现,大气中出现了氧气,于是也出现了体内具有有氧呼吸酶系统的好氧微生物。可见,有氧呼吸是在无氧呼吸的基础上发展而成的。尽管现今生物体的呼吸形式主要是有氧呼吸,但仍保留有无氧呼吸的能力。由上述分析可以看出,无氧呼吸和有氧呼吸有明显的不同。 呼吸作用 产生乳酸的主要有乳酸菌、玉米的胚、马铃薯块茎、甜菜块根和骨骼肌,这就是为什么剧烈运动后腿会发酸。而产生酒精酒精最主要的是酵母菌、根霉、曲霉。特别的是硝化细菌是兼性呼吸。 意义 对生物体来说,呼吸作用具有非常重要的生理意义。 植物呼吸作用过程:有机物+氧→二氧化碳+水+能量 有氧呼吸 反应式:(底物一般为葡萄糖)葡萄糖+6H2O+6O2 酶 能量 无氧呼吸 反应式: 酶 能量(少量) 酶 能量(少量) 呼吸类型 有氧呼吸 生物的呼吸作用包括有氧呼吸和无氧呼吸两种类型。 呼吸作用图解 生物进行呼吸作用的主要形式是有氧呼吸。有氧呼吸是指细胞在氧的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量能量的过程。有氧呼吸是高等动物和植物进行呼吸作用的主要形式,因此,通常所说的呼吸作用就是指有氧呼吸。细胞进行有氧呼吸的主要场所是线粒体。一般说来,葡萄糖是细胞进行有氧呼吸时最常利用的物质。 有氧呼吸的全过程,可以分为三个阶段:第一个阶段,一个分子的葡萄糖分解成两个分子的丙酮酸,在分解的过程中产生少量的还原氢(用[H]表示),同时释放出少量的能量,这个阶段是在细胞质基质中进行的;第二个阶段,第一阶段产生的丙酮酸在酶的催化作用下与水结合,产生二氧化碳和大量还原氢,这个阶段是线上粒体基质中进行的;第三个阶段,前两个阶段产生的氢,经过一系列的反应,在酶的催化下与氧结合而形成水,同时释放出大量的能量,这个阶段是线上粒体内膜上进行的。以上三个阶段中的各个化学反应是由不同的酶来催化的。在mol的葡萄糖在彻底氧化分解以后,共释放出约2870kJ的能量,其中有1161kJ左右的能量储存在ATP中,其余的能量都以热能的形式散失了。 有氧呼吸过程中能量变化 在有氧呼吸过程中,葡萄糖彻底氧化分解,1mol的葡萄糖在彻底氧化分解以后,共释放出约2870kJ的能量,其中有1161kJ的能量储存在ATP中,其余的能量都以热能的形式散失了。 有氧呼吸公式 第一阶段 C6H12O6酶→细胞质基质=2丙酮酸+4[H]+能量 (2ATP)大学里4[H]是2个NADH和2个H+ 第二阶段 2丙酮酸+6H 2 O酶→线粒体基质=6CO 2 +20[H]+能量 (2ATP) 第三阶段 24[H]+6O 2 酶→线粒体内膜=12H 2 O+能量 (34ATP) 总反应式 C6H12O6+6H 2 O+6O 2 酶→6CO 2 +12H 2 O+大量能量 (38ATP) 有氧呼吸详细内容 有氧呼吸 指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸。其根本意义在于给机体提供可利用的能量。细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A。在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子。在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子。生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2。细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要。在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中。三羧酸循环是在需氧生物中普遍存在的环状反应序列。循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环。因柠檬酸是环上物质,又称柠檬酸循环。也可用发现者的名字命名为克雷布斯循环。在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸。柠檬酸然后转变成另一个六碳三羧酸异柠檬酸。异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸。后者再脱去1个CO2,产生四碳二羧酸琥珀酸。最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸。再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环。循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢。草酰乙酸参加了循环反应,但没有净消耗。如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化。环上的羧酸化合物都有催化作用,只要小量即可推动循环。凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化。所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制。三羧酸循环必须在有氧的情况下进行。环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源。呼吸链由一系列按特定顺序排列的结合蛋白质组成。链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧。在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中。不同生物,甚至同一生物的不同组织的呼吸链都可能不同。有的呼吸链只含有一种酶,也有的呼吸链含有多种酶。但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类。这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起著传递氢(递氢体)或电子(递电子体)的作用。其蛋白质部分,则决定酶的专一性。为简化起见,书写呼吸链时常略去其蛋白质部分。上图即是存在最广泛的NADH呼吸链和另一种FADH 2 呼吸链。图中用MH2代表任一还原型代谢物,如苹果酸。可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸)。这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶。这两种辅酶都含有烟酰胺(维生素PP)。在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中。 NAD++2H(2H++2e)NADH+H+ NADP++2H(2H++2e)NADPH+H+ 黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe³+=e++Fe²+。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe³+=e+Fe²+。发现的细胞色素有 b、c、c1、aa3等多种。这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连线方式均有差异。在典型的呼吸链中,其顺序是b→c1→c→aa3→O 2 。还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶。生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同。如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统。呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致。生物进化越高级,呼吸链就越完善。与呼吸链偶联的ATP生成作用叫做氧化磷酸化。NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子。FADH2呼吸链则只生成2个ATP分子。 无氧呼吸 无氧呼吸一般是指细胞在无氧条件下,通过酶的催化作用,把葡萄糖等有机物质分解成为不彻底的氧化产物,同时释放出少量能量的过程。这个过程对于高等植物、高等动物和人来说,称为无氧呼吸。如果用于微生物(如乳酸菌、酵母菌),则习惯上称为发酵。细胞进行无氧呼吸的场所是细胞质基质。 苹果储藏久了会有酒味;高等植物在水淹的情况下,可以进行短时间的无氧呼吸,将葡萄糖分解为酒精和二氧化碳,并且释放出少量的能量,以适应缺氧的环境条件;高等动物和人体在剧烈运动时,尽管呼吸运动和血液循环都大大加强了,但是仍然不能满足骨骼肌对氧的需要,这时骨骼肌内就会出现无氧呼吸。高等动物和人体的无氧呼吸产生乳酸。此外,还有一些高等植物的某些器官在进行无氧呼吸时也可以产生乳酸,如马铃薯块茎、甜菜块根等。 植物的呼吸作用 无氧呼吸的全过程,可以分为两个阶段:第一个阶段与有氧呼吸的第一个阶段完全相同;第二个阶段是丙酮酸在不同酶的催化下,分解成酒精和二氧化碳,或者转化成乳酸。以上两个阶段中的各个化学反应是由不同的酶来催化的。在无氧呼吸中,葡萄糖氧化分解时所释放出的能量,比有氧呼吸释放出的要少得多。例如,1mol的葡萄糖在分解成乳酸以后,共放出19665kJ的能量,其中有6108kJ的能量储存在ATP中,其余的能量都以热能的形式散失了。 区别 有氧呼吸: 有氧呼吸是指细胞在氧气的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量的能量的过程。有氧呼吸是高等动植物进行呼吸作用的主要形式。 无氧呼吸: 指生活细胞对有机物进行的不完全的氧化。这个过程没有分子氧参与,其氧化后的不完全氧化产物主要是酒精。总反应式:C6H12O6→2C 2 H5OH+2CO 2 +226千焦耳(54千卡)在高等植物中常将无氧呼吸称为发酵。其不完全氧化产物为酒精时,称为酒精发酵;为乳酸则称为乳酸发酵。在缺氧条件下,只能进行无氧呼吸,暂时维持其生命活动。无氧呼吸最终会使植物受到危害,其原因,一方面可能是由于有机物进行不完全氧化、产生的能量较少。于是,由于巴斯德效应,加速糖酵解速率,以补偿低的ATP产额。随之又会造成不完全氧化产物的积累,对细胞产生毒性;此外,也加速了对糖的消耗,有耗尽呼吸底物的危险。 无氧呼吸公式: 酒精发酵: →酶→ 能量(少量) 乳酸发酵: →酶→ 能量(少量) (箭头上标:酶) 有氧呼吸公式:C6H12O6+6H 2 O+6O 2 酶→6CO 2 +12H 2 O+38ATP 有氧呼吸主要在线粒体内,而无氧呼吸主要在细胞基质内 有氧呼吸需要分子氧参加,而无氧呼吸不需要分子氧参加 有氧呼吸分解产物是二氧化碳和水,无氧呼吸分解产物是:酒精和CO 2 或者乳酸 有氧呼吸释放能量较多,无氧呼吸释放能量较少 无氧呼吸和有氧呼吸的过程虽然有明显的不同,但是并不是完全不同。从葡萄糖到丙酮酸,这个阶段完全相同,只是从丙酮酸开始,它们才分别沿着不同的途径形成不同的产物:在有氧条件下,丙酮酸彻底氧化分解成二氧化碳和水,全过程释放较多的能量;在无氧条件下,丙酮酸则分解成为酒精和二氧化碳,或者转化成乳酸,全过程释放较少的能量。 意义 呼吸作用 对生物体来说,呼吸作用具有非常重要的生理意义 呼吸作用 第一 呼吸作用能为生物体的生命活动提供能量。呼吸作用释放出来的能量,一部分转变为热能而散失,另一部分储存在ATP中。当ATP在酶的作用下分解时,就把储存的能量释放出来,用于生物体的各项生命活动,如细胞的分裂,植株的生长,矿质元素的吸收,肌肉收缩,神经冲动的传导等。 第二 呼吸过程能为体内其他化合物的合成提供原料。在呼吸过程中所产生的一些中间产物,可以成为合成体内一些重要化合物的原料。例如,葡萄糖分解时的中间产物丙酮酸是合成胺基酸的原料。同时,保持大气中二氧化碳和氧气的含量保持平衡。 套用 发酵工程:发酵工程是指采用工程技术手段,利用生物,主要是微生物的某些功能,为人类生产有用的生物产品,或者直接用微生物参与控制某些工业生产过程的一种技术。人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,利用乳酸菌发酵制造乳酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的套用前景。例如,利用DNA重组技术有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长素等。 一种工业发酵罐

2017年公卫执业助理医师考试《生理学》呼吸知识

 呼吸是人类最重要的生理活动也是人类新陈代谢的一种。下面是我为大家的带来的关于呼吸的知识。欢迎阅读。

 一、呼吸过程

 呼吸全过程包括三个相互联系的环节:(1)外呼吸,包括肺通气和肺换气;(2)气体在血液中的运输;(3)内呼吸。

 掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的全过程。呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。对肺泡的气体交换来说,传送带构成解剖无效腔。而呼吸性细支气管及以下结构则可进行气体交换,称为呼吸带,是气体交换的结构。呼吸带内不能进行气体交换的部分则成为肺泡无效腔。正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。

 (2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是内呼吸的一部分。

 二、肺通气:气体经呼吸道出入肺的过程

 (一)肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体的分压差)。

 肺通气的原始动力——呼吸运动。

 平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。用力呼吸时,吸气和呼气都是主动的。

 吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。吸气肌收缩可使胸廓容积增大,肺内气压降低,引起吸气过程。主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成的呼吸运动称为胸式呼吸。正常生理状况下,呼吸运动是胸式和腹式的混合型式。

 (二)肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。

 1、弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性=1/弹性阻力。肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、表面张力成反变关系,顺应性越小表示肺越不易扩张。在肺充血、肺纤维化时顺应性降低。

 肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。

 正常成人在平静呼吸时,肺顺应性大约为02L/cmH2O,位于静态顺应性曲线的中段斜率最大的部分,故平静呼吸时肺的弹性阻力小,呼吸省力。另外呼气和吸气时的肺顺应性曲线并不重叠,这种现象称为滞后现象。主要与肺泡液-气界面的表面张力有关。

 比顺应性:肺顺应性受肺总量的影响,肺的总量较大,则其顺应性就较大。肺的总顺应性为02L/cmH2O,每侧肺为01。意义:用于比较不同大小个体的肺组织弹性阻力。

 比顺应性=平静呼吸肺顺应性/肺的功能残气量。

 表面张力的产生与肺泡表面的表面活性物质(主要成分是二软脂酰卵磷脂DPPG)和表面活性物质结合蛋白(SP)。

 DPPG由肺泡II型细胞合成并释放。肺泡表面活性物质作用:降低肺泡液-气界面的表面张力而使肺泡的回缩力减小。生理意义是:维持肺泡稳定性;减少肺间质和肺泡内组织液的生成,防止肺水肿;降低吸气阻力,减少吸气做功。

 肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸窘迫综合征等病变。

 2、胸廓的弹性阻力和顺应性

 胸廓的弹性阻力来自胸廓的弹性成分。肺容量小于肺总量67%时,即平静呼吸或呼气时,胸廓的弹性阻力是吸气的动力,呼气的阻力;但当肺容量大于肺总量67%,即深吸气时,胸廓的弹性阻力成为吸气的阻力,呼气的动力。这与肺不同,肺的弹性阻力始终是吸气的阻力。正常人胸廓的顺应性也是02L/cmH2O。

 3、肺和胸廓的总弹性阻力和顺应性

 总顺应性为01L/cmH2O。

 (2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管径大小的影响。使气道平滑肌舒张的'因素有:跨壁压增大、肺实质的牵引、交感神经兴奋、PGE2、儿茶酚胺类等。

 使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。

 平静呼吸时气道阻力主要发生在直径2mm细支气管以上的部位。

 三、胸内压:即胸膜腔内的压力

 1、胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的浆液,无气体存在。

 2、胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。胸内压=大气压(肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压=-肺回缩力,故胸内负压是肺的回缩力造成的。

 3、胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起,故肺处于被动扩张状态,产生一定的回缩力。吸气末回缩力大,胸内负压绝对值大,呼气时,胸内负压绝对值变小。

 4、胸内负压的意义:

 (1)保持肺的扩张状态。

 (2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。

 四、肺容量与肺通气量

 (一)肺容积:有四种基本的肺容积,互不重叠,全部相加等于肺总量。

 1、潮气量:平静呼吸时,每次吸入或呼出的气量。一般为500ml。

 2、残气量:在尽量呼气后,肺内仍保留的气量。1000-1500ml

 3、补吸气量:1500-2000ml

 4、补呼气量:900-1200ml

 (二)肺容量:肺容积中两项或两项以上的脸和气体量。

 1、深吸气量=潮气量+补吸气量,衡量最大通气潜力

 2、功能残气量=残气量+补呼气量;生理意义上缓冲呼吸过程中肺泡气氧和二氧化碳分压得变化幅度。肺气肿时增加,肺实质变时减少。

 3、肺活量:最大吸气后,从肺内所能呼出的最大气量。正常成年男性约为3500ml。反映肺一次通气的最大能力。

 用力呼气量FEV(时间肺活量):是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的用力肺活量(FVC)。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能,测定时要求以最快的速度呼出气体。

 4、肺总量。

 (三)肺通气量和肺泡通气量

 1、每分肺通气量=潮气量×呼吸频率。

 2、最大随意通气量:在尽力作深、快呼吸时,每分钟所能吸入或呼出的最大气体量。意义:反映单位时间内充分发挥全部通气能力所能达到的通气量,是估计一个人能进行多大运动量的生理指标之一。

 3、通气贮量百分比=(最大通气量—每分平静通气量)/最大通气量100%

 正常值等于或者大于93%

 4、每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率。

 无效腔气量为生理无效腔,包括解剖无效腔和肺泡无效腔。但在健康人平卧时,生理无效腔等于解剖无效腔。

 潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。如潮气量减少1/2,呼吸频率增加1倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量减少。从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。

 评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说,最好的指标是肺泡通气量。因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映肺通气的效果。

 五、肺换气

 即肺泡与肺毛细血管血液之间的气体交换。

 1、结构基础:呼吸膜(肺泡膜),包括六层结构:(1)表面活性物质层和肺泡液体层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6)毛细血管内皮细胞层。

 记忆方法:

 呼吸膜是气体 由肺泡到血液或由血液到肺泡所经过的结构,所以呼吸膜必须包括肺泡上皮和毛细血管内皮两层,而上皮和内层组织都带有自己的基底膜,两层基底膜之间应有空隙,这样呼吸膜就包括五层结构,加上肺泡表面的液体层,共有六层。其中肺泡表面的液体层与肺泡气体形成液一气交界构成表面张力,是弹性阻力的主要成份,而液体层表面的肺泡表面活性物质能降低表面张力。

 2、肺换气的动力:气体的分压差。

 分压是指在混合气体中某一种气体所占的压力。

 在单位分压差下, 每分钟通过呼吸膜扩散的某种气体的毫升数称为肺扩散容量。

 扩散系数或者指数是气体溶解度与分子量的平方根值比。

 3肺换气的原理:

 肺换气与组织换气的原理完全相同。在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液,而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。

 4影响肺换气的因素:

 (1)呼吸膜的面积和厚度影响肺换气。在肺组织纤维化时,呼吸膜面积减小,厚度增加,将出现肺换气效率降低。凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气。

 (2)气体分子的分子量,溶解度以及分压差也影响肺换气。

 O2的分子量小于CO2,肺泡与血液间O2分压差大于CO2分压差,仅从这两方面看,O2的扩散速度比CO2快,但由于CO2在血浆中的溶解度远大于O2(24倍),故综合结果是CO2比O2扩散速度快,所以当肺换气功能不良时,缺O2比CO2潴留明显。

 (3)通气/血流比值是影响肺换气的另一重要因素。

 通气/血流比值(V/Q)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为084左右。V/Q>084表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于肺泡无效腔增大。

 V/Q<084表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体的肺泡后再回流入静脉(动脉血),也就是发生了功能性动—静脉短路。

 通气/血流比值的记忆方法:

 将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值。

 肺换气功能不良时,缺氧比二氧化碳潴留更明显的原因:

 a 动静脉之间O2的分压差远大于CO2的分压差,所以动-静脉短路时,动脉血PO2下降的程度大于PCO2升高的程度

 b CO2的扩散系数是O2的20倍,所以CO2扩散比O2快,不易潴留

 c 动脉血PO2下降和PCO2升高时,可以刺激呼吸,增加肺泡通气量,有助于CO2的排出,却几乎无助于O2的摄取,这是由于两者的解离曲线的特点所决定的。

 肺部各个部位的通气/血流比值并不相同。人直立时,肺尖部较大,肺底部较小。

 六、气体在血液中的运输

 1氧气的运输:包括物理溶解和化学结合。

 (1)物理溶解量取决于该气体的溶解度和分压大小。

 (2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占985%,正常人每100ml动脉血中Hb结合的O2约为195ml。

 (3)Hb是运输O2的主要工具,Hb与O2结合特点如下:

 ①可逆性结合;②Hb中的Fe2+仍然是亚铁状态;③是氧合而不是氧化;④结合与解离都不需酶催化,取决于血中p(O2)的高低;⑤结合或解离曲线S型,与Hb的变构效应有关。

 氧饱和度=Hb氧含量/氧容量

 1gHb实际结合的O2量为134ml。100ml血液中,Hb所能结合的最大O2量称为Hb的氧容量,而Hb实际结合的O2量称为Hb的氧含量。

 HbO2呈鲜红色,去氧Hb呈紫蓝色。当血液中去氧Hb含量达5g/100ml以上时,皮肤、粘膜出现紫绀—一般表示缺氧(但高原性红细胞增多症除外),相反,严重贫血或CO中毒时,机体发生缺氧,但并不出现紫绀。

 2二氧化碳的运输:

 (1)运输形式:物理溶解占5%,化学结合:HCO3-占88%,氨基甲酰血红蛋白占7%;(2)O2与Hb结合将促使CO2释放,这一效应称何尔登效应。

 氯转移:当CO2进入红细胞与水反应生成H2CO3后被碳酸酐酶迅速分解成HCO3-和H+,HCO3-顺浓度梯度扩散出红细胞,红细胞内负离子的减少须伴有相应量的正离子向外扩散,但是红细胞膜不允许正离子自由通过,小的负离子可以通过,于是Cl-便由血浆扩散进入红细胞,这一现象称为氯转移(chloride shift)。在红细胞中,碳酸氢根与K离子结合,在血浆中与钠离子结合。

 3氧解离曲线的特点:呈S型

 (1)上段较平坦,氧分压在60m/100mmHg范围变化时,Hb氧饱和度变化不大。 动脉血中的氧饱和度为974%

 (2)中段较陡,是HbO2释放O2部分。 40-60mmHg;混合静脉血中的氧饱和度为75%,

 (3)下段最陡,HbO2稍降,就可大大下降,这有利于运动时组织的供氧。下段代表O2贮备。 15-40mmHg

 4影响氧解离曲线的因素:

 [H+]↑、pCO2、温度升高、2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放O2增多供组织利用。Hb与O2的结合还为其自身性质所影响。

 酸度增加降低Hb与氧亲和力的效应称为波尔效应。波尔效应的生理意义:既可促进肺毛细血管血液的氧合,又有利于组织毛细血管释放O2。

 CO中毒既妨碍HB与O2的结合,又妨碍O2的解离,其危害极大。

 七、呼吸中枢及呼吸节律的形式

 1、是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。

 呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。

 基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。

 2、呼吸中枢的结构和功能特性:

 呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼吸中枢和呼吸调整中枢等。

 (1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核,大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经元又含有呼气相关神经元。

 (2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的Kolliker-Fuse复合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维,动物将出现长吸气呼吸。

 3呼吸节律形成的假说——吸气切断机制:

 引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射;③肺牵张感受器兴奋经传入神经将信息传至吸气切断机制。

 八、呼吸的反射性调节

 (一) 化学感受性呼吸反射

 1、调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。

 2、中枢化学感受器与外周化学感受器的异同点:

 位置

 感受细胞

 感受刺激

 中枢感受器

 延髓腹外侧浅表部位

 神经细胞

 [H+]↑(pH↓)p(CO2)↑

 外周感受器

 颈动脉体和主动脉体

 Ⅰ型细胞

 pH↓、p(CO2)↑、pO2↓

 ※颈动脉体主要参与呼吸调节,而主动脉体主要参与循环调节。

 ※颈动脉体感受的化学刺激是pO2的降低,而不是动脉血中O2含量的降低。

 ※中枢化学感受器的直接生理刺激是[H+]变化而不是O2、CO2的变化。

 3、CO2对呼吸的调节:CO2对呼吸有很强的刺激作用,一定水平的pCO2对维持呼吸中枢的兴奋性是必要的。CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激中枢化学感受器是主要途径。但吸入气CO2过高,则引起中枢的抑制,成为CO2麻醉。

 CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感受器,又可以增高脑脊液中H+浓度作用于中枢感受器;而血中H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢;所以外周化学感受器在引起快速呼吸反应中起重要作用。O2含量变化不能刺激中枢化学感受器,同时低O2对中枢则是抑制作用。

 4[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的最有效刺激是脑脊液中的H+。

 5低O2对呼吸的调节:低O2对呼吸运动的刺激完全通过外周化学感受器实现。O2含量变化不能刺激中枢化学感受器,pO2降低兴奋外周化学感受器,对中枢则是抑制作用。

 记忆方法:

 (1)调节呼吸的体液因子有O2、CO2、H+,其中O2、CO2是脂溶性小分子物质,可以自由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受O2、CO2的变化。中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓O2、CO2度的变化,而外周化感的感受细胞是Ⅰ型细胞,是“特殊”功能的细胞,故能受到O2、CO2浓度变化的刺激。

 (2)H+不能自由通过细胞膜,故细胞外液中的H+浓度增加,对中枢化感的“正常”细胞和外周化感的“特殊”细胞都是有效的刺激。

 (3)pCO2↑时,在碳酸酐酶的作用下使H+增多,故pCO2↑能间接兴奋中枢化学感受器。

 (4)由于中枢化感是“正常”感受细胞,而外周化感为“特殊”细胞,故H+增多,pCO2增高,主要通过中枢化感调节呼吸运动。

 (5)由于外周化感为“特殊”感受细胞,因此它的适应性较中枢慢,当持续pCO2增高对中枢化感的刺激作用出现适应现象时,不能吸入纯氧,因为需要一定的低pO2对外周化感的刺激作用,以兴奋呼吸。

 (二)肺牵张反射(黑—伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤维是通过迷走神经粗纤维进入延髓。

 肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺萎陷反射。平静呼吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。肺扩张反射的意义是加速吸气过程向呼气过程转换,增加呼吸频率。

 2肺毛细血管旁(J)感受器引起的呼吸反射:

 J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引起呼吸变浅变快。

;

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2060591.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-06
下一篇2023-11-06

随机推荐

  • 男士基础护肤套装不知道怎么选?看这里

    男士基础护肤套装不知道怎么选?AHC男士水乳三件套AHC是韩国的一个品牌,它家的面膜一直都很热销,这个套盒性价比挺高的,外观设计很高级,专门针对男性设计的,不挑肤质及年龄,使用后清爽不黏腻可平衡水油,成分中不含酒精,敏感肌也可以用,有淡淡的

    2024-04-15
    791200
  • 油性皮肤的护肤品,具体具体~~~~

    亲~你的皮肤属于混合的不过有些偏油勒,其实现在这样的皮肤比较多类,洗面奶方面我推荐下婵真银杏的那个,价格在淘宝上是40-50这样,找到好的卖家可以买到正品哦,泡沫很细腻的,而且一点点就可以揉出好多的泡沫,银杏的味道也很舒服啊~~淡淡的,然后

    2024-04-15
    26000
  • 妮维雅面霜怎么样?

    妮维雅在国内比较知名的一个品牌,虽然说妮维雅的产品可以说是物美价廉,很多人平时都会用到它们家的洗面奶,它们家的唇膏也是很多妹子比较喜欢的,这里我们来说一说它们家的面霜,它们家的面霜还算比较火,那妮维雅面霜怎么样?妮维雅面霜好用吗?1、妮维雅

    2024-04-15
    18200
  • 护肤套装用什么牌子好

    咱们中国人肌肤很大的问题就是干燥和暗黄,解决这2个问题,你的肌肤马上升级一大半,今天我们就给大家介绍8款超级好用有效的美白补水护肤品套装,要想肌肤好,还是要用护肤品套装,这样比好几个牌子的组合效果提升更多,而且不会过敏,所以美白补水护肤套装

    2024-04-15
    15300
  • 平价美白身体乳推荐 趁冬天白回来

    工欲善其事,必先利其器。要想美白,要找好合适的身体乳~如今身体乳还越做越像面部产品了,很多用在脸上的经典美白活性物组合直接被搬到身体乳里去了,身体也能和脸享受同等待遇了~ 接下来我就分享几款平价又好用的美白身体乳吧。1、凡士林3号烟酰胺身体

    2024-04-15
    12600
  • 保湿滋润的唇膏有哪些?口碑润唇膏推荐

    嘴唇干燥脱皮是很多人遇到过的问题,嘴巴脱皮影响唇部的美观,平时可以常备一支润唇膏,预防嘴唇干燥脱皮,有很多润唇膏比较滋润,用起来感受也比较好,好用的润唇膏有很多,那么保湿滋润的唇膏有哪些?口碑润唇膏推荐,一起来看看吧!1、好用润唇膏推荐1、

    2024-04-15
    10500
  • 精华液和精华乳的区别

    精华液和精华乳的区别在于性质不同、功效不同等。1、性质不同:一般情况下精华液的性质属于高保湿型的护肤品。精华乳的性质一般情况下密度相对于精华液的要稍高一些,是一种功能性质的高营养护肤品。2、功效不同:一般情况下精华液的功效可以改善肌肤暗沉,

    2024-04-15
    18000

发表评论

登录后才能评论
保存