一:牌号:GH3536镍基高温合金
二:化学成分:磷p(0025)硫s(≤0015)镍ni(余量)钼mo(80~100)钴co(05~25)碳c(005~015) 钨w(02~10)铁fe(170~200)铜Cu(05)铝Al(015)钛Ti(05) 锰mn(≤10)硅si(≤10) 铬cr(205~235)
三:应用范围应用领域:
工业和航空汽轮机(燃烧室、整流器、结构盖),工业炉部件、支撑辊、栅板、丝带和辐
管,石油化学炉中的螺旋管。高温气体冷却核反应堆。
四:物理性能:密度g/cm3(828) 熔点℃(1260~1355) 弹性模量GPa(142~199)
硬度(≤241)热导率λ/(W/m•℃)( 1338(100℃)) 热膨胀系数(121
五:概况:该合金主要是用铬和钼固溶强化的一种铁量罗高的镍基高温合金,具有良好的抗氧化和耐腐蚀性能,在900℃以下有中等到的持久和蠕变强度,冷、热加工成形性和焊接性能良好。适用于制造航空发动机的燃烧室部件和其他高温部件,900℃以下长期使用,短时工作温度达到1080℃。
锡在高温水蒸气中和氧气接触将生成氧化锡(SnO)。
对你有更大的帮助,其他内容补充:
三、锡渣的形成:
1〉、静态熔融焊料的氧化
根据液态金属氧化理论,熔融状态的金属表面会强烈的吸附氧,在高温状态下被吸附的氧分子将分解成氧原子,氧原子得到电子变成离子,然后再与金属离子结合形成金属氧化物。暴露在空气中的熔融金属液面瞬间即可完成整个氧化过程,当形成一层单分子氧化膜后,进一步的氧化反应则需要电子运动或离子传递的方式穿过氧化膜进行,静态熔融焊料的氧化速度逐渐减小;熔融的SnCu07比Snpb37合金氧化的要快。
毕林-彼德沃尔斯(Pilling-Bedworth)〈1〉理论表明:金属氧化膜是否致密完整是抗氧化的关键,而氧化膜是否致密完整主要取决于金属氧化后氧化物的体积要大于金属氧化前金属的体积;熔融金属的表面被致密而连续氧化膜覆盖,阻止氧原子向内或金属离子向外扩散,使氧化速度变慢。氧化膜的组成和结构不同,其膜的生长速度和生长方式也有所不同;熔融SnCu07和Snpb37合金从260℃以同等条件冷却凝固后,SnCu07的表面很粗糙,而Snpb37的表面较细腻。从这一角度反映了液态SnCu07合金氧化膜得致密完整度较Snpb37 要差。
哈佛大学的Alexei Grigoriev〈2〉 等人用999999%的纯锡样本放置在坩埚中,并在超低真空下加热到240℃,然后向其中充纯氧,通过X光线衍射、反射及散射观察熔融Sn的氧化过程。他们在研究中发现,在没到达氧化压之前,熔融锡液具有抗氧化能力。压力达到4×10-4Pa至83×10-4Pa范围时,氧化开起发生。在这个氧分压界限上,观察到了在熔融锡表面氧化物“小岛”的生长。这些小岛的表面非常粗糙,并且从清洁锡表面的X射线镜面反射信号一致减少,这种现象可以证明氧化碎片的存在。表面氧化物的X射线衍射图案不与任何已知的Sn氧化物相相匹配,而且只有两个Bragg峰出现,它的散射相量是√3/2,并观察到强度很明确的面心立方结构。通过切向入射扫描(GID)测量了熔融液态锡表面结构,并与已知锡氧化物进行比较。可以说熔融液态锡在此温度和压力情况下,在纯氧中的氧化物相结构不同于SnO或SnO2。
另外,不同温度下SnO2与PbO的标准生成自由能不同,前者生成自由能低,更容易产生,这也在一定程度上解析了为什麽无铅化以后氧化渣大量的增加。表一列出了氧化物的生成Gibbs自由能,可以看出SnO2比其他氧化物更易生成。通常静态熔融焊锡的氧化膜为SnO2和SnO的混合物。
氧化物按分配定律可部分溶解于熔融的液态焊料, 同时由于溶差关系使金属氧化物向内部扩散,内部金属含氧逐步增多而使焊料质量变差,这在一定程度上可以解释为何经过高温提炼(或称还原)出来的合金金属比较容易氧化,且氧化渣较多;氧化膜的组成、结构不同,其膜的生常速度、生长方式和氧化物在熔融焊料中的分配系数将会有很大差异,而这又和焊料的组成密切相关。此外,氧化还和温度、气相中氧的分压、熔融焊料表面对氧的吸收和分解速度、表面原子和氧原子的化合能力、表面氧化膜的致密度、以及生成物的溶解、扩散能力等有关。
表一 氧化物的标准Gibbs自由能
oxide
△G0fT(O原子)/(KJ/g)
298K
400K
500K
600K
PbO
-1888
-1788
-1687
-1595
SnO2
-2601
-2497
-2397
-2288
CuO
-1294
-1197
-1110
1017
Ag2O
-105
-38
25
88
2〉、动态熔融焊料的氧化
波峰焊接过程中广泛使用双波峰,第一个波峰为汌流波峰,其波面宽度比较窄,熔融焊料流速比较快;第二个波峰为层流波,波面平整稳定,如一面镜子,流速较慢。波的表面不断有新的熔融焊料与氧接触,氧化渣是在熔融焊料快速流动时形成的,它与静态氧化有很大的不同,动态时形成的焊料渣有三种形态:
a、表面氧化膜 锡炉中的熔融焊料在在高温下,通过其在空气中的暴露面和氧相互接触发生氧化。这种氧化膜主要形成于锡炉中相对静止的熔融焊料表面呈皮膜状,主要成分是SnO。只要熔融焊料表面不被破坏,它就能起到隔绝空气的作用,保护内层熔融焊料不被继续氧化。这种表面氧化膜通常占氧化渣量的10%左右。
b、黑色粉末 这种粉末的颗粒都很大,产生于熔融焊料的液面和机械泵轴的交界处,在轴的周围呈圆形分布并堆积。轴的高速旋转会和熔融焊料发生摩擦,但由于熔融焊料的导热性很好,轴周围熔融焊料的温度并不比其它区域的温度高。黑色粉末的形成并不是应为摩擦温度的升高所致,而是轴旋转造成周围熔融焊料面的漩涡,氧化物受摩擦随轴运动而球化。同时摩擦可造成焊料颗粒的表面能升高而加剧氧化;约占氧化渣量的20%左右。
C、氧化渣 机械泵波峰发生器中,存在着剧烈的机械搅拌作用,在熔融焊料槽内形成剧烈的漩涡运动,再加上设计的不合理造成的熔融焊料面的剧烈翻滚。这些漩涡和翻滚运动形成的吸氧现象,空气中的氧不断被吸入熔融焊料内部。由于吸入的氧有限,不能使熔融焊料内部的氧化过程进行得像液面那样充分,因而在熔融焊料内部产生大量银白色沙粒状(或称豆腐渣状)的氧化渣。这种渣的形成较多,氧化发生在熔融焊料内部,然后再浮向液面大量堆积,甚至占据焊料槽的大部分空间,阻塞泵腔和流道,最后导致波峰高度不断下降,甚至损坏泵叶和泵轴;另一种是波峰打起的熔融焊料重新流回焊料槽的过程中增加了熔融焊料与空气中氧的接触面,同时在熔融焊料槽内形成剧烈的漩涡运动形成吸氧现象,从而形成大量的氧化渣。这两种渣通常占整个氧化渣量的70%,是造成浪费最大的。应用无铅焊料后将产生更多的氧化渣,且SnCu多于SnAgCu,典型结构是90%金属加10%氧化物。
日本学者Tadashi Takemoto〈3〉等人对SnAg35、 SnAg30Cu05 、 Sn63Pb37焊料进行试验,发现所有焊料的氧化渣重量都是通过线性增长的,三种焊料氧化渣的增长率几乎相同,也就是其增长速率与焊料成分关系不大。氧化渣的形成与熔融焊料的流体流动有关,流体的不稳定性及瀑布效应,可能造成吸氧现象及熔融焊料的翻滚,使氧化渣的形成过程变得更加复杂。另外,从工艺角度讲,影响氧化渣产生因素包括波峰高度、焊接温度、焊接气氛、波峰的扰度、合金的种类或纯度、使用助焊剂的类型、通过波峰PCBA的数量及原始焊料的质量等。
四、氧化锡渣的结构
通常我们所说的锡渣主要是由氧化锡SnO2(即锡灰)和被包裹在氧化锡内的锡Sn以及少部分的碳化物质组成,被包裹在氧化锡内的锡Sn的比例最少在50%以上,有的甚至高达90%(具体含量视捞渣的情况而定)。
锡渣中的氧化锡(即锡灰)通常是SnO2,灰色粉末状、四方、六方或正交晶体;密度为695克/立方厘米;熔点1630℃;结构式:O:SnO;分子量 :15069 ;于1800~1900℃升华;难溶于水、醇、稀酸和碱液;缓溶于热浓强碱溶液并分解,与强碱共熔可生成锡酸盐;能溶于浓硫酸或浓盐酸;锡含量:70% - 90%以上。
五、氧化渣减少的措施
国内外学者和企业对无铅波峰焊氧化渣减少措施进行了大量的研究,主要有以下几方面:
1>、采用氮气保护
氮气保护是一种减少氧化渣产生的有效措施,利用氮气将空气与熔融焊料隔开可有效减少氧化渣的产生。因无铅焊料的润湿性明显要弱于传统有铅焊料,并易氧化,在氮气保护下进行无铅焊接已成为普遍技术之一。
氮气气氛下焊接,随着氧气溶度的降低,无铅焊料的氧化明显减少。氮气保护下氧气溶度低于50ppm或更低时,无铅焊料基本上不发生氧化,并将得到更好的焊接质量;氧溶度在50-500ppm时,氧化渣量可减少85%-95%左右。
Linde 公司推出SOLDERFLEX®LIS 波峰炉惰性气体保护系统,通过对波峰焊设备进行改装,即将为波峰留有开槽的不锈钢结构伸入到焊料池中,配置多根气体喷射管、气体控制操作面板等,使惰性气体直接施加到大多数氧化渣产生的地方来控制氧化渣的产生;据称在焊接区的氧含量可控制在100PPM左右,氧化渣可减少50%-80%。
根据Claude Carsac〈4〉等人提供的数据,对于不同合金种类,氧化渣降低的相对含量差异不大。表二是国外学者作出的研究结果〈5〉。
表二 大气条件和氮气保护条件下无铅焊料氧化渣形成量对比 〈5〉
合金种类
氧化渣形成量(克/小时)
大气条件下
氮气保护条件下
ITRI实验室
某商用波峰焊设备
ITRI实验室
某商用波峰焊设备
SnCu07
287
908
168
45
SnAg35
228
721
121
36
SnAg2Cu08Sb05
198
626
098
31
SnIn20Ag28
800
40
氮气保护也会带来不足,主要表现是增加了PCBA表面锡珠的产生和营运成本,通常节约的焊锡不足以抵消购买液氮或氮气发生器的运行和维护成本。但从焊锡质量的角度和使用昂贵的无铅焊料情况下,是否节约又得另当别论。总之,在使用氮气保护系统之前,要仔细计算和考虑。
2〉电磁泵的研究与使用
机械泵波峰发生器如设计不当,就会存在剧烈的机械搅拌作用,在焊料槽内形成强烈的漩涡运动和液面的翻滚,形成吸氧现象,空气中的氧被不断吸入熔融焊料的内部形成大量的氧化渣,然后浮向液面不断的堆积。1969年瑞士学者RFJPERRIN首先提出了利用电磁泵泵送熔融金属焊料传导的新方案,70年代中期瑞士KRISTN 公司利用此技术在行业中首先推出了单相交流传导式电磁波峰焊接机系列产品(6TF系列),1982年法国也有类似的技术获得专利权。80年代末我国电子工业部二十所发明了单相感应式熔融金属电磁泵并试制了样机,微波峰焊接设备中产生熔融焊料波峰动力技术的发展开辟了一条新的途径。他去掉了机械泵所有旋转的零部件(含电机),与瑞士学者发明的传导式电磁泵的不同就在于它完全去掉了传导电流及其产生系统,技术上有很大的进步。
电磁泵目前有单相感应式和多相感应式两种,电磁泵的优点有:
a、永不磨损、寿命长、维修方便。
b、波峰平稳、熔融焊料的氧化减少且能自动对消电网电压。
C、能量综合利用,效率高。
d、良好的焊料波峰动力学特征。
e、工作中波峰焊料温度跌落小。
不足之处:同样存在流体的不稳定性及瀑布效应,由这几种现象形成的锡渣无法减少, 且目前电磁泵的价格比较昂贵,远没有机械泵得到应用的广泛。
3〉锡渣分离装置的研究
即行业中所说的锡渣还原机,Cookson公司研制了一种自动清除氧化渣装置,他将喷嘴进行特殊设计而引导流出的熔融焊料到指定位置,用一撇浆将氧化渣自动撇除到收集装置。收集装置下面是一个收集、压缩氧化渣的热滚筒,分开可用的焊料被收集整理并引导流入热炉中,最后成型已备再利用。不可用的废渣Sno2(即锡灰)被堆积在一用于清除和循环利用的容器中。据说比手工清渣效率要提高80%。
日本学者Tadashi Takemoto〈3〉等人在实验中利用了自己研制的一种锡渣分离并再利用装置,该装置附在锡炉上。波峰焊机工作8小时而锡渣分离系统(OSS)工作半小时即可,据称该系统可使氧化渣减少一半。
日本千住公司推出了一款焊锡回收设备,其原理是将氧化渣放入到设备中加热后加入经特殊加工过的芝麻,使其与氧化渣混合及搅拌,芝麻油将氧化物从氧化渣混合物中还原出来并全部吸附在芝麻上,实现了将焊料与氧化物分开。
另外日本及香港的厂商推出了靠机械搅拌作用分离锡渣的分离器,国内某厂商推出了依靠化学作用的锡渣还原机,据称还原率可达到80%左右。
这种设备属离线分离处理,由于利用的是物理分离法,已氧化的锡渣SnO2是不可能被还原出锡Sn的, 我们看到所谓还原出来的锡,只不过是在打牢锡渣时混杂在其中的纯锡而已,高温、加压及还原机在工作状况下的摩擦,反而会将在打牢锡渣时混杂在其中的纯锡再度氧化;氧化物按分配定律可部分溶解于熔融的液态焊料, 同时由于溶差关系使金属氧化物向内部扩散,内部金属含氧逐步增多而使焊料质量变差,大多数焊料生产厂家都采用加入P元素来改善其抗氧化性能,经过高温分离(或称还原)出来的合金焊料中的抗氧化元素早已消耗完毕,因此这种方法处理出来的焊料非常容易氧化,且氧化渣较多;占用空间、需专人操作、耗电、噪音大,打捞、运输、储存、还原过程复杂,增加管理成本。在还原率本身就不高的情况下,减去设备占用空间的租金+储存空间的租金+员工工资+电费+设备投资等,还不如直接与厂家兑换锡条!由于易造成二次污染,又要消耗电能,在电力供应本身就很紧张的情况下,使用此类设备的可行性也将遭到质疑!
以上几种出方法都是采用物理分离的原理将混合在氧化渣中的纯锡Sn分离出来,虽可在一定程度上减少氧化锡渣的产生,但已氧化的SnO2根本无法用此方法还原出锡Sn来,且经过高温加热分理出的锡更容易氧化,产生更多的氧化锡渣,去除相关的成本后,根本就达不到节约成本的目的!因此,大多数电子制造企业都在寻求一种既可抗氧化又可将SnO2还原成Sn的化学产品。
4〉抗氧化焊料的使用
日本学者Tadashi Takemoto〈3〉等人向焊料中加入P和Ge元素进行研究,试验用合金焊料为SnAg和SnAgCu,具体化学成分见表三。设备为可容纳15KG的小波峰锡炉,试验温度为250℃。通过实验得到:氧化渣的重量随时间线性增加;添加少量的Ge和P可有效降低氧化渣的重量,其中P的加入可使氧化渣的重量降低到原来的50%左右;对氧化渣进行化学分析表明,在氧化渣含有的微量元素中Ge是添加含量2-9%,磷是45倍多。氧化渣中的主要成分是SnO,氧含量为5at%左右,90%的氧化渣是由金属组成的。
表三 各种焊料合金的化学成分
成分
简写
元素质量百分比(%)
Ag
Cu
P
Ge
其他
Sn
SnAg35
SA
356
Bal
SnAg35P0003
SA30P
348
000325
Bal
SnAg35P0006
SA60P
350
0006
Bal
SnAg35P001
SA100P
348
00092
Bal
SnAg35Ge005
SA5Ge
350
0050
Bal
SnAg35Ge01
SA10Ge
351
0090
Bal
SnAg35Cu07
SA7C
348
071
Bal
SnAg30Cu05
SA5C
304
053
Bal
SnAg30Cu05P0004
SA5C40P
303
05
0004
Bal
SnAg35Cu07Ge005
SA7C5G
351
067
0049
Bal
SnAg35Cu3507Ge01
SA7C10G
35
068
01
Bal
SnCu05Ag03
SCA
034
049
Bal
SnCu05Ag03P0004
SCA40P
034
049
0004
Bal
国内学者也都研究并提出了通过在各种不同合金无铅料焊料中分别添加诸如TI、 Ga、 Re、 Sb、 In、 Ni等各种微量元素,以减少氧化渣的产生,都收到一定的效果。目前国内波峰焊行业所用的无铅焊料主要是SnCu和SnAgCu,大多数焊料生产厂家都采用加入P元素来改善其抗氧化性能,但抗氧化效果都会随时间的延长、微量元素的消耗而逐步失效。因此有了抗氧化还原剂的出现!
锡渣还原剂(粉)的研究与应用
氧化渣的产生与熔融焊料流动行为有很大关系,流体越不稳定、扰度越大就越容易吸氧而使氧化渣大量增加,到目前为止,波峰焊接过程焊料氧化渣混合物的形成机理还不够明确,对于使用波峰焊的电子生产企业来说,最好选择喷流系统设计合理、产生氧化渣较少、捞取氧化渣方便的波峰焊设备,再配合性价比高的抗氧化还原剂,以最终减少因氧化渣(SnO2)带来的浪费,从而获得更高的经济效益。
由于无铅焊料中的抗氧化微量元素倾向于向熔融焊料表面凝聚并优先于Sn元素与空气中的氧结合,微量元素很快被消耗掉,焊料也就失去抗氧化的效果;流体的不稳定性及瀑布效应,及熔融焊料的翻滚造成的吸氧现象;氧化物按分配定律可部分溶解于熔融的液态焊料,同时由于溶差关系使金属氧化物向内部扩散,种种原因使焊料合金内部的含氧逐步增多;因此在熔融的焊料炉内添加一种抗氧化还原剂,使产生的氧化锡渣立即被还原而无法堆积,同时有效阻止氧化渣的进一步产生,是目前最切实可行的有效措施;因此国内外商家先后推出了锡渣(焊料氧化渣即SnO2工业中又成为锡渣)抗氧化还原剂(粉)。
抗氧化还原剂必须具备的条件:
a>、必须符合环保要求,不影响生产场所的工作环境,不影响焊料的合金成分;
b>、反应后的残留物无粘性或不能飞散,不能污染PCBA的板面及现有生产设备(如波峰焊等);
c>、不易燃,无腐蚀性,不改变现有生产工艺,不影响现有设备的日常维护与保养;
d>、用量少,还原率高,反应后的残留物易于处理,最好能通过生物降解;真正从环保的角度为企业节能、降耗。
台湾某公司研究出一种锡渣还原粉,主要吸收各种杂质及氧化物,避免熔融焊锡氧化及散热损失。据称该还原粉的使用可使焊料的氧化减少95%左右。不足之处是烟雾大、有刺鼻的气味,使用该还原粉时必须对波峰焊设备进行改进,且反应后的残留物有粘性,冷却后变成坚硬的固体,对设备的日常维护、保养带来一定的不便。
美国PKay金属Fein-Line合伙公司研制的熔融钎料表面活性剂,与融化的焊料接触有两个功能:一是在熔融焊料表面形成一种保护膜保护焊料不被氧化,二是其中的活性成分与金属氧化物反应并使他们溶解在活性剂中,作为有机金属化合物悬浮在金属氧化物颗粒和残留的活性剂之间。直到药剂被消耗掉为止,活性剂不与金属反应,只与氧化渣发生反应,无烟无味。当氧化渣中的金属氧化物被溶解时,这相互连结的氧化物的排列是开放的,任何夹在氧化渣中的金属都聚结在一起流回到熔融的焊料中。并且成分不会受到活性剂成分的影响。据称这种性的技术可降低焊料成本40%-75%;不足之处是使用该还原剂是必须对波峰焊设备进行改进,且反应后的残留物有粘性,冷却后变成坚硬的固体,黏附在设备或PCBA上很难清理,甚至有可能堵塞喷嘴,对设备的日常维护、保养带来一定的不便,一旦不小心沾到PCB板上很难清洗掉,将影响到产品的电气性能和焊点的可靠性!且价格昂贵,降低的焊料成本与使用活性剂的成本持平。
深圳市堃琦鑫华科技有限公司研发的ICHIMURA --JR07锡渣抗氧化还原剂,属高分子有机化合物,系由多种表面活性剂、润湿剂、分散剂等经科学方法复配而成;不含任何重金属,可溶于大多数有机溶剂,也可溶于水;PH值6-7之间为中性;优异的耐高温(燃点330℃以上)和耐挥发性能(几乎不会挥发),几乎无烟、无味、无粘性、无腐蚀性,同时具有抗氧化及还原的功能;用量少,还原效率高,达90%以上;据FLEXTRONICS公司的评估报告显示,减去ICHIMURA --JR07锡渣抗氧化还原剂的使用成本,节约焊料用量达38%;FOXCONN、HASEE、SOLECTRON、PRIMAX、GBM、HUNTKEY等公司的评估报告都对ICHIMURA --JR07锡渣抗氧化还原剂给出了相当高的评价;该产品操作简单、方便,无需改装设备和添加人员,可直接加入锡缸还原锡渣,直接减少锡渣打捞量及打捞次数;提高生产效率及焊料的利用率;不会改变焊料的有效成分;不污染PCBA;还原效率高;优异的耐高温和耐挥发性能,残留物无粘性、易碎,可溶于水,可生物降解,不会沉入缸底,不用担心堵塞喷嘴或叶轮,并有利于设备的保养,设备的日常维护只需用湿擦拭布擦拭即可。
ICHIMURA --JR07锡渣抗氧化还原剂可以将包在氧化渣里面的锡分离出来,也可以将氧化的锡(SnO2)还原成可利用的锡(Sn);并且抗氧化还原剂中的有效成分优先于Sn元素与空气中的氧元素O2结合,明显减少熔融焊料内部的氧O2含量,防止熔融焊料进一步发生氧化,增强熔融焊料液面的流动性,有效帮助PCBA的焊接。
产品完全通过SGS、SIR、MSDS、STIR、切片等的测试或认证。
其与氧化物的还原过程大致可视为:O2+R=OxRx; PbOx + R = Pb + OR (1) ;SnOy + R = Sn +OR (2) 式中:PbOx 为铅氧化物,R 为液体还原剂,Pb 为还原铅,OR 为氧化物,SnOy 为锡氧化物, Sn 为还原锡。 在ICHIMURA --JR07锡渣抗氧化还原剂的再生处理工艺中,成功地采用了液体覆盖化学置换反应还原法。这种还原剂为无毒的有机类材料,是可生物降解的物质,其本身和氧化物对人类和环境无害。 利用液体覆盖还原处理废焊料工艺,一方面,由于温度控制在 280℃以下相对较低范围,远低于(锡渣还原机的温度)400℃以上铅烟产生的温度;另一方面,液体还原剂的表面覆盖也有效地抑制铅烟的逸出;该产品水溶性的特性决定其内部含有少部分的水分,在使用时所看到的少量烟雾实为水蒸气;这样,不仅有效地还原了焊渣中的铅锡氧化物,而且也有效地避免了残余物和铅烟对环境的污染。
ICHIMURA --JR07锡渣抗氧化还原剂的优点表现为:
a> PH值6-7为中性,不易燃,无腐蚀性,无粘性;
, ; b> 几乎无烟、无味,无卤素,不含任何重金属成分,符合ROHS;
c> 用量少,还原率高,达90%以上,有效提高产品品质及焊料的利用率;
d> 不会改变焊料的有效成分;不污染PCBA,不用担心堵塞喷嘴或叶轮;
e> 减少熔融焊料中氧的含量,增强焊料的流动性和润湿性,有效帮助PCBA的焊接;
f> 无需改装设备和添加人员,可在线操作,直接加入锡缸,减少锡渣打捞的量及次数。
g> 反应后的残留物为泥状物,无粘性,易碎,可溶于水,有利于设备的日常维护与保养;
h> 反应后的残留物可水解或通过生物降解;真正从环保的角度为企业节能、降耗。
i> 产品通过SGS、MSDS、SIR、STIR、切片等的测试与认证,真正属于环保节能产品
如何分辨锡渣:
这个问题其实真的很难回答,我是做锡的,要学会分清锡渣的品味光靠说的不行,得经常性地观察才行,但可以初步的说一下,抓一小把锡渣放入勺子里,然后放在炉子上加热,并不停地用高溶点的物体或者是筷子也可以对锡渣进行搅拌,直到锡渣里的锡化开,然后慢慢地将锡水到在地上,等其冷却后看其表面的花纹,具体的花样很难说清的。也可以在倒的时候倒的长一点,使其状如长条,冷却后用手反复的折锡条,50度以上的锡铅合金会发出“沙沙”的响声,但具体的是多少度就不是三言两语能说得清了
锡渣回收与鉴别:一般灰少粒块多的锡成分高,含铅高的颜色暗,锡含量高的颜色稍微发黄颜色,用力折弯有卡卡的响声
肺泡是由单层上皮细胞构成的半球状囊泡。肺中的支气管经多次反复分枝成无数细支气管,它们的末端膨大成囊,囊的四周有很多突出的小囊泡,即为肺泡。
基本介绍 中文名 :肺泡 外文名 :alveolus 平均直径 :02毫米 功能 :肺部气体交换的主要部位 部位 :肺部 组成 :大、小肺泡细胞,肺巨噬细胞等 简介,组成,功能,扁平细胞,分泌细胞,肺泡孔,肺泡隔,上皮,通气量,定义,测定方法,临床意义,灌洗操作, 简介 肺泡(alveolus,复数alveoli)的大小形状不一,平均直径02毫米。成人约有7亿多个肺泡,总面积近100平方米,全部展开大约有50个桌球桌那么大,比人的皮肤的表面积还要大好几倍。肺泡是肺部气体交换的主要部位,也是肺的功能单位。氧气从肺泡向血液弥散,要依次经过肺泡内表面的液膜、肺泡上皮细胞膜、肺泡上皮与肺毛细血管内皮之间的间质、毛细血管的内皮细胞膜等四层膜。这四层膜合称为呼吸膜。呼吸膜平均厚度不到1微米,有很高 的通透性,故气体交换十分迅速。 肺泡 吸入肺泡的气体进入血液后,静脉血就变为含氧丰富的动脉血,并随着血液循环输送到全身各处。肺泡周围毛细血管里血液中的二氧化碳则可以透过毛细血管壁和肺泡壁进入肺泡,通过呼气排出体外,肺泡内的表面液膜含有表面活性物质,起著降低肺泡表面液体层表面张力的作用,使细胞不易萎缩,且吸气时又较易扩张。肺组织缺氧时,会使肺表面活性物质分泌减少,进入肺泡的水肿液或纤维蛋白原可降低其表面活性物质的活力,引起肺内广泛的肺泡不张,血液流经这些萎陷肺泡的毛细血管时就不能进行气体交换。临床上新生婴儿患肺不张症,就是因为缺乏肺表面活性物质所致。相邻两肺泡间的组织为肺泡隔,内有丰富的毛细血管及弹性纤维、网状纤维。弹性纤维包绕肺泡,使肺泡具良好弹性。患慢性支气管炎或支气管哮喘时,肺泡长期处于过度膨胀状态,会使肺泡的弹性纤维失去弹性并遭破坏,形成肺气肿,影响呼吸机能。 组成 小肺泡细胞,又称I型肺泡细胞,厚约 01微米,基底部是基底膜,无增殖能力。 大肺泡细胞,又称II型肺泡细胞,分泌表面活性物质(二棕榈酰卵磷脂),以降低肺泡表面张力。 肺巨噬细胞,来自于血液单核细胞。吞噬了较多尘粒的被称为尘细胞,而心衰细胞则是心力衰竭患者肺内出现的吞噬了血红蛋白分解产物的巨噬细胞。 肺泡与肺部毛细血管紧密相连。两者的膜大部分融合,有助于气体的快速扩散。而肺泡表面液体层,I型肺泡细胞与基膜,薄层结缔组织,毛细血管基膜与内皮组成了所谓的气-血屏障。 肺泡 肺泡:肺泡壁是由单层扁平上皮构成,有三种细胞: A 扁平上皮细胞(I型细胞),其基膜紧贴毛细血管。 B 分泌上皮(II型细胞),该细胞突向管腔或夹在扁平上皮细胞之间,可分泌表面活性物质。 C 隔细胞:位于肺泡间隔中,当进入肺泡腔内就叫尘细胞。在尘细胞的细胞质内有大量尘埃颗粒,属于吞噬细胞。 D 肺泡隔:是相邻肺泡壁之间的结构,由结缔组织和丰富的毛细血管组成。 由于毛细血管内皮的对液体的通透性比肺泡细胞内皮的要高,心力衰竭患者体液会渗出到结缔组织中,造成间质性肺水肿。 肺泡为多面性囊泡,一面开口于肺泡囊、肺泡管或呼吸性细支气管,其余各面与相邻的肺泡彼此相接。肺泡壁很薄,表面覆有肺泡上皮。肺泡是支气管树的终末部分,是肺进行气体交换的部位。肺泡 还有毛细血管 扩大表面积。 功能 肺部气体交换的主要部位。为多面形有开口的囊泡。泡壁薄,直径约为200~250微米,成人肺泡约有7亿,总面积可达100米 2 。相邻肺泡之间的组织称肺泡隔,其中富含毛细血管 网、弹性纤维、网状纤维和胶原纤维等结缔组织。肺泡一面开口于肺泡囊,肺泡管或呼吸性细支气管;另一面与肺泡隔的结缔组织和血管密接。肺泡表面有两种上皮细胞。 肺泡的功能 扁平细胞 (Ⅰ型细胞):肺泡表面大部分为此种细胞、核扁椭圆形,细胞很薄,光镜下难于识别。电镜下可见肺泡上皮下方及肺泡毛细血管内皮外方各有一基膜,肺泡与血液间气体交换至少要经过肺泡上皮、上皮的基膜、内皮的基膜及内皮细胞四层结构,有些部位还可见到上皮基膜和内皮基膜之间有少量结缔组织存在。这些结构构成“气血屏障”。 分泌细胞 (Ⅱ型细胞):细胞圆形或立方形,表面有少量微绒毛,细胞质内除有一般细胞器外,尚有嗜锇性板层小体,直径为01~10微米。小体外包薄膜,内富含磷脂、粘多糖、蛋白等,可释放其内容物于肺泡上皮表面,称肺泡表面活性物质,具有降低肺泡表面张力,稳定肺泡直径的作用。Ⅱ型上皮还有不断分化、增殖,修补损坏肺泡上皮作用。 肺泡解刨细节和肺循环 肺泡孔 (alveolar pores)为肺泡间小孔,一般一个肺泡上可有1~6个。此孔连线相邻肺泡,并在肺泡扩张时完全张开,呈卵圆形或圆形,为沟通相邻肺泡内气体的孔道,当某支气管受到阻塞时可通过肺泡孔建立侧支通气,进行有限的气体交换。 肺泡隔 (alveolar septum):相邻肺泡之间的薄层结缔组织为肺泡隔。肺泡隔内有稠密的连续毛细血管网与肺泡壁相贴。肺泡隔内还有较多的弹性纤维,其弹性回缩作用可促使扩张的肺泡回缩。如果弹性纤维退化变性,肺泡弹性减弱回缩较差,会影响肺的呼吸功能,久之将使肺泡扩大 ,导致肺气肿。肺泡隔内还有成纤维细胞、巨噬细胞、浆细胞和肥大细胞,此外还有淋巴管和神经纤维。 肺泡腔内的O2与肺泡隔毛细血管内血液携带的CO2之间进行气体交换所通过的结构,称气-血屏障(blood-air barrier)。气-血屏障由肺泡表面液体层、Ⅰ型肺泡细胞与基膜、薄层结缔组织、毛细血管基膜与连续内皮构成。有的部位两层基膜之间没有结缔组织成分,上皮基膜和毛细血管基膜相融合。气-血屏障很薄,总厚度约为02~05μm间质性肺炎时,肺泡隔内结缔组织水肿、炎症细胞浸润,使肺换气功能发生障碍。 肺泡 上皮 肺泡上皮:肺泡表面有一层完整的上皮。上皮细胞包括Ⅰ型肺泡细胞和Ⅱ型肺泡细胞。 1)Ⅰ型肺泡细胞(typeⅠalveolar cell):Ⅰ型肺泡细胞扁平,覆盖肺泡的大部分表面,细胞含核部分较厚并向肺泡腔内突出,无核部分胞质菲薄,厚约02μm,是进行气体交换的部位。电镜下,Ⅰ型肺泡细胞细胞器少,胞质内有较多的吞饮小泡,小泡内含有表面活性物质和微小 的尘粒,细胞可将这些物质转运到肺泡外的间质内,以便清除。Ⅰ型肺泡细胞无分裂增殖能力。 肺 2)Ⅱ型肺泡细胞(type Ⅱ alveolar cell):Ⅱ型肺泡细胞位于Ⅰ型肺泡细胞之间,数量较Ⅰ型肺泡细胞多,但覆盖面积比Ⅰ型肺泡细胞小。细胞立方形或圆形,顶端突入肺泡腔。细胞核圆形,胞质着色浅、呈泡沫状。电镜下,细胞游离而有少量微绒毛,胞质内富含线粒体和溶酶体,有较发达的粗面内质网和高尔基复合体。核上方有较多的分泌颗粒,电子密度高、大小不等,直径约01~10μm颗粒内含有平行排列的板层状结构,称为嗜饿性板层小体(osmilphilic multilamellar body)。小体内的主要成分为磷脂,以二棕榈酰卵磷脂为主,此外还有糖胺多糖及蛋白质等。颗粒内物质释放出来后,在肺泡表面形成一层粘液层,称为表面活性物质(surfactant)。表面活性物质有降低肺泡表面张力、稳定肺泡大小的作用。呼气时肺泡缩小,表面活性物质密度增加,表面张力降低,防止肺泡过度塌陷;吸气时肺泡扩张,表面活性物质密度减小,肺泡回缩力加大,可防止肺泡过度膨胀。表面活性物质的缺乏或变性均可引起肺不张,过度通气可造成表面活性物质缺乏;吸入毒气可直接破坏表面活性物质。新生儿透明膜病是因为Ⅱ型肺泡细胞发育不良,表面活性物质合成和分泌障碍,致使肺泡表面张力增大,婴儿出生后肺泡不能扩张,出现新生儿呼吸窘迫症。Ⅱ型肺泡细胞有分裂、增殖并分化为Ⅰ型肺泡细胞的潜能,故具有修复受损伤上皮的作用。 通气量 定义 肺泡通气量(alveolar ventilation, VA)是指静息状态下每分钟吸入气能达到肺泡并进行气体交换的有效通气量。正常呼吸中,呼吸性细支气管以上的气道仅起气体传导作用,不参与肺泡气体交换,是为解剖无效腔或死腔;部分进入肺泡的气体因无相应的肺泡毛细血管血流与之进行气体交换,则亦无法进行气体交换,是为肺泡无效腔),解剖无效腔和肺泡无效腔合称生理无效腔(生理死腔),不能进行气体交换的这部分气体称为死腔通气(dead space ventilation, VD)。正常情况下,因通气/血流比例正常,肺泡死腔量极小,可忽略不计,因此生理死腔量基本等于解剖死腔量。解剖死腔量一般变化不大(除支气管扩张以外),故生理死腔量变化主要反映肺泡死腔量的变化。 测定方法 受检者取坐位, 休息15min, 加鼻夹, 含咬口器, 待呼吸平稳后,收集呼出气,测定呼出气CO2分压(PECO2),并在收集呼出气之末取动脉血或动脉化耳血测定PaCO2 。依改良Bohr公式: VD/VT=(PaCO2-PECO2) /PaCO2可计算出无效腔通气比值,则VA=VE×(100-VD/VT) %。 临床意义 VA能确切反映有效通气的增加或减少。生理死腔量的增大见于各种原因引起的肺血管床减少、肺血流量减少或肺血管栓塞,反映换气功能的异常。 肺泡通气量减少见于肺通气量减少和/或生理死腔量增大。若VE不变,呼吸浅快时潮气量(VT)少,而解剖死腔不变则肺泡通气量下降。故从VA的角度考虑,深而慢的呼吸较浅而快的呼吸为好。 灌洗操作 常规纤支镜气道检查后在活检刷检前做BAL。对弥漫性间质性肺疾病通常选择右肺中叶(B4或B5)或左肺舌叶,局限性肺病变则在相应支气管肺段进行BAL。 首先对拟在要灌洗肺段经活检孔注入2%利多卡因1~2ml,做灌洗肺段局部麻醉,然后将纤支镜顶端楔入段或亚段支气管开口处,再从活检孔快速注入37℃灭菌生理盐水,立即以 50~100mmHg(666~133kPa)负压吸引回收液体,每次注入30~50ml,总量100~250ml,一般不超过300ml,通常回收率可达40%~60%。立即将回收液用双层无菌沙布过滤,除去黏液,并记录总量。 肺泡灌洗操作 装入矽塑瓶或涂矽灭菌玻璃容器中(减少细胞黏附), 置于含有冰块的保温瓶中,立即送往实验室检查。在支气管肺泡灌洗的技术操作时,必须注意以下几点:① 纤支镜选择,用于灌洗纤支镜末端直径55~60mm,适宜于紧密楔入段或亚段支气管管口,防止大气道分泌物混入和灌洗液的外溢,保证BALF的满意回收量;② 在灌洗过程中咳嗽反射必须得到满意的抑制,否则易引起支气管壁黏膜的损伤而造成灌洗液的混血, 同时也影响回收量;③ 灌洗的生理盐水需加温至37℃,过冷或过热将引起支气管痉挛和刺激性咳嗽;④ 负压吸引应保持在50~100mmHg,负压过大时导致支气管陷闭和损伤,并影响回收量。
(Transbronchial Biopsy, TBB):广义上包括经支气管镜病灶活检、支气管粘膜活检、经支气管镜透壁肺活检(Transbronchial LungBiopsy,TBLB)及经支气管镜针吸活检(Transbronchial NeedleAspiration, TBNA)。大多数肺部及气道疾病,如肿瘤、间质性肺病、肉芽肿性疾病以及某些感染性疾病需要通过经支气管镜活检术来确定诊断,这是最常用的一项检查项目 。
1.TBB的适应证
1)气管、支气管腔内的病变:如支气管癌、中心型肺癌并支气管壁浸润、支气管内结核、支气管淀粉样变、结节病等可通过支气管镜检查来发现病变并进行病灶活检。
2)肺部弥漫性病变:支气管镜直视下不可见的弥漫性病变:肺周围型腺癌、弥漫性肺间质病变及各种炎症性病变等,常通过TBLB来获得病变的组织。
3)肺内局灶性病变:支气管镜直视不可见的周围型肺肿块或结节、局限性肺浸润性病变,如周围型肺癌、转移瘤、孤立结节为表现的肺癌、结核球、炎性病变及真菌结节灶等。这些局限性病变需要借助于超细支气管镜或经X线或超声引导等手段进行病灶活检。
4)支气管腔外病变:一些在气管镜直视下不能窥见或仅表现为外压性表现的支气管腔外病变,如纵隔腔内或肺门区域病变,肿大的淋巴结、团块、结节病灶等,可采用经支气管壁针吸术,获取细胞学或组织学标本。
2.经支气管镜活检的操作方法
1)TBB狭义指单纯针对支气管腔内直视下进行的活检术,如支气管粘膜活检和支气管内病灶活检,主要用于各种支气管腔内和粘膜病变。
2)TBLB主要用于肺部弥漫性病变及周围型肺内局灶性病变。分为无X线引导和经X线引导两种方法。
通常采用无X线引导的TBLB,多用于肺部弥漫性病变,选择病变受累较重一侧的下叶进行,一般选择下叶的9、10段,应避开中叶。操作方法:将活检钳插至所选择的段支气管内,至遇阻力时将活检钳后撤1-50px,此时张开活检钳,嘱患者深吸气,同时活检钳再向前推进1-50px至遇到阻力,再嘱患者深呼气,于深呼气末将活检钳夹闭并缓慢退出。在操作过程中,如患者感到胸痛,应退出活检钳,更换部位另行活检。
X线引导下的TBLB多用于周围型肺内局灶性病变,支气管镜达到病变所在的肺段或亚段后,在X线电视透视下,将活检钳插入所选择的亚段支气管内,穿过支气管壁至病变区。对周围型肺内局灶性病变,X线引导下的TBLB比无X线引导的诊断阳性率高。
3)TBNA:主要是在气道内对腔外某一病灶或淋巴结进行穿刺,透过气道壁后进入纵隔或肺门,通过穿刺针获取纵隔或肺门区贴近气道壁的病变组织。TBNA是一种非直视下的活检方法,需要操作者熟练掌握胸部淋巴结的解剖及与其相关的大血管的结构关系,且具备较强的立体想像能力,这样有助于操作者正确地将穿刺针经气管、支气管壁进入深部病灶并避免损伤纵隔内重要脏器。通常采用WANG氏穿刺定位法进行纵隔淋巴结的盲穿。目前超声内镜引导的经支气管针吸活检(Endobronchial ultrasoundguided transbronchial needle aspiration,EBUS-TBNA)已广泛应用于临床,其穿刺后标本获取率优于普通盲法TBNA。 支气管肺泡灌洗(Bronchoalveolarlavage,BAL)是一项经支气管镜进行的无创操作技术,在疾病诊断中已经被广泛的接受。通过向肺泡内注入足量的灌洗液并充分吸引,得到支气管肺泡灌洗液(Bronchoalveolar lavagefluid,BALF),在肺泡水平分析以下重要信息,如免疫细胞、炎症细胞、细胞学和感染微生物病原学资料,辅助进行呼吸道疾病的诊断、病情观察和预后判断 。
支气管肺泡灌洗术分全肺灌洗和肺段肺泡灌洗。全肺灌洗是治疗肺泡蛋白沉积症的标准治疗方法;肺段肺泡灌洗是常规用于疾病诊断的方法。 BAL的适应证 1)弥漫性实质性肺疾病的诊断,如结节病、过敏性肺炎、隐源性机化性肺炎、特发性肺纤维化等,BALF具有一定的诊断价值。
2)肺部特殊感染:对于免疫抑制患者(如肾移植、肝移植、骨髓移植等患者)的机会性感染,BAL可以帮助得到病原体,如人肺孢子菌肺炎,其BALF的阳性率优普通痰涂片。
3)针对某些特殊疾病,可提供强有力的线索,如:急性嗜酸粒细胞性肺炎和弥漫性肺泡出血、肺泡蛋白沉积症等,如红色逐渐加深的BALF提示弥漫性肺泡出血,而白色混浊的BALF提示肺泡蛋白沉积症。
4)判断某些疾病的病程和治疗疗效。如:特发性间质性肺炎(idiopathic interstitialpneumonia,IIP)中,特发性肺纤维化(idiopathic pulmonary fibrosis,IPF)和非特异性间质性肺炎(nonspecific interstitial pneumonia,NSIP)的BALF的改变有重要的差别。NSIP的BALF的细胞分类以淋巴细胞增多为主,伴有轻度的中性粒细胞和嗜酸粒细胞增多,预后较好。IPF的灌洗液以中性粒细胞增多为主,常预后不佳。 BAL的操作方法: 1)操作前准备:局部麻醉、心电血压及脉搏血氧饱和度的监测。
2)完成气管支气管分支的观察,然后进行BAL,最后进行活检或刷检,这样操作可减少医源性出血对肺泡灌洗液中细胞和蛋白成分的影响。
3)BAL的部位:通常选择影像学表现最显著的部位;对于病灶局限者选择病变肺段BAL;对于弥漫性病变,右中叶(B4或B5)和左舌叶是最佳的部位。
4)BAL的液体注入:支气管镜置入并崁顿在选定的肺段,当气管镜崁顿于支气管的第三或第四级亚段,可获得最佳的肺泡灌洗回收量。注入37ºC或室温无菌生理盐水。通常经支气管镜的活检孔用注射器注入灌洗液,每次注入20~60ml(常规进行4~5次),直到总共灌洗100~300ml。灌洗液过少(<100ml)则增加气管和支气管污染的可能,例如大气道的炎性细胞能使灌洗细胞分类结果产生偏倚。
5)BAL的回吸收:第一管灌洗液注入后,需立即用50~100mmHg负压吸引回收灌洗液,通常回收率为40~60%。负压过强能使远端的气道陷闭或损伤气道粘膜、减少回吸收量或者改变BAL液的性状。对于怀疑肺泡出血的患者,通常在同一部位进行3管液体的灌洗。观察回收的3管灌洗液的颜色呈逐渐加深。
6)合格的BALF标本:BALF中没有大气道分泌物混入;回收率>40%;存活细胞占95%以上;红细胞<10%(除外创伤/出血因素),上皮细胞<3%~5%;涂片细胞形态完整,无变形,分布均匀。
7)BAL与支气管冲洗和全肺灌洗的不同:冲洗液主要来自于大气道,通常要求注入盐水量为10~30ml,目的是对病灶肺段进行细菌学或脱落细胞等检查。全肺灌洗是用于治疗肺泡蛋白沉积症的一种独特的治疗方法,需要在全身麻醉下,通过双腔气管内导管注入大量(30~50L)的无菌盐水,用于清洗肺泡蛋白沉积症患者的一侧全肺。 (Protected Specimen Brush, PSB)
PSB主要用于重症或医院获得性肺炎的病原学诊断,尤其是呼吸机相关性肺炎或免疫抑制宿主肺部感染的病原学诊断 。
1.PSB的适应证
1)免疫缺陷患者的肺部感染;
2)呼吸机相关性肺炎的病原学诊断;
3)肺炎治疗效果不佳或肺炎延迟吸收,即病原体不明的难治性肺炎;
4)怀疑有厌氧菌感染或有阻塞因素存在者;
5)肺部感染与非感染疾病难以鉴别;
6)非侵入性检查结果阴性或临床难以解释者。
2.PSB的操作技术
PSB检查所用毛刷有单套管和双套管保护刷两种,常使用分子量在1500~2000的聚乙二醇制作保护塞。具体操作步骤如下:
1)支气管镜至直视有分泌物或至X线有病变的肺段支气管开口后,经支气管镜活检孔插入保护性毛刷;
2)将保护毛刷伸出支气管镜末端2~75px,再推出内套管,顶掉毛刷末端的保护塞,内套管伸出外套管末端1~50px后再推出毛刷,采集标本;
3)依次退回毛刷或内套管,再将整个毛刷从支气管镜中拔出;
4)用75%酒精擦拭外套管末端,然后用无菌剪刀将毛刷前面部分剪掉,伸出毛刷,将毛刷头剪掉至于1ml生理盐水中充分震荡,使毛刷中的标本脱落。若要重复使用毛刷,可不剪掉毛刷而直接将毛刷头伸入试管中充分震荡;
5)将标本作定量培养。PSB定量培养一般以>10cfu/ml为阳性诊断标准。
Elgiloy应用:
弹簧,密封件,半导体元件,口腔正畸,医疗器械,外科植入物,weixing通信设备和武器系统。
Elgiloy描述
Elgiloy是具有非常高的强度的独特组合,同时保持优异的可成形性,优异的耐腐蚀性,以及高疲劳强度的非磁性钴-铬-镍-钼合金。通过老化冷轧材料可以实现高达25%的额外强度增加。Elgiloy是耐liu化物应力腐蚀具有很高的耐开裂,并且作为结果是选择在最苛刻的酸以及环境中的合金。在海水中,Elgiloy合金®是几乎不受缝隙腐蚀和应力腐蚀并在zui高强度级别,甚至蚀。Elgiloy执行在宽的温度范围内:从低温到850 °F(454 ℃下)。
Elgiloy行业供应:
石油和天然气开采,医疗,牙科,航空航天,国防,太空探索和制表。
Elgiloy化学成分:
C:015 max
Mn:15-25
Si:120 max
P:0015 max
S:0015 max
Cr:190-210
Ni:140-160
Co:390~410
Mo:60~80
Be:010 max
Fe:Balance
Elgiloy物理特性:
密度: 030 lb / in 3,(830 g / cm 3)
弹性模量(E):
在70°F(20°C):27 - 29 x 10 3 ksi冷轧(186 - 200 GPa冷轧)
在70°F(20°C):30 - 32 x 10 3 ksi冷轧和老化(206 - 221 GPa冷轧和老化)
刚性模量(G):
在70°F(20°C):110 x 10 3 ksi(76 GPa)
膨胀系数:
84μin/ in-°F(70°F至600°F)
152μm/ m-°C(20°C至300°C)
电阻率: 3921μΩin,(996μΩcm)
导热系数: 865 Btu-in / ft 2 hr-°F,(125 W / mK)
Elgiloy适用规格
带和箔: AMS 5876,ASTM F1058,NACE MR 0175和MR 0103,ISO 5832-7
Elgiloy典型机械性能 - 弹簧应用
退火
热处理: 按照AMS 5876
抗拉强度: 100 ksi min(690 MPa)
建议操作条件: -300 °F至850 °F(-184 °C至454 °C)
弹簧回火
热处理: 无热处理
抗拉强度: 高达310 ksi(2100 MPa)
建议操作条件: -300 °F 至850 °F (-184 °C 至454 °C)
弹簧回火+老化
热处理: 冷轧后。老化:按AMS 5876,Nace MR 0175
抗拉强度: 高达380 ksi(2600 MPa)
建议操作条件: -300°F至850°F(-184°C至454°C)
欢迎分享,转载请注明来源:品搜搜测评网