修复基因(repaorgeme)

修复基因(repaorgeme),第1张

基因修复(gene repair),基因治疗策略的一种,是指在原位修复有缺陷的基因,将靶细胞中致病基因的突变碱基序列加以纠正,使其在质和量上均能得到正常表达。

人类细胞基因治疗的临床实验已经开始。 进行基因治疗必须具备下列条件:①选择适当的疾病,并对其发病机理及相应基因的结构功能了解清楚;②纠正该病的基因已被克隆,并了解该基因表达与调控的机制与条件;③该基因具有适宜的受体细胞并能在体外有效表达;④具有安全有效的转移载体和方法,以及可供利用的动物模型。已对若干人类单基因遗传病和肿瘤开展了临床的基因治疗。 1991年,我国科学家进行了世界上首例血友病B的基因治疗临床试验,目前已有4名血友病患者接受了基因治疗,治疗后体内IX因子浓度上升,出血症状减轻,取得了安全有效的治疗效果。随后,我国科学家利用胸腺激酶基因治疗恶性脑胶质瘤基因治疗方案获准进入1期临床试验,初步的观察表明,生存期超过1年以上者占55%,其中 1例已超过三年半,至今仍未见肿瘤复发。此外,采用血管内皮生长因子基因治疗外周梗塞性下肢血管病基因治疗方案也已获准进入临床试验。目前,我国已有6个基因治疗方案进入或即将进入临床试验。 总的来看,我国基因治疗产业比美国落后了约4年,正处于成长阶段,绝大部分还处于实验室研究阶段,仅有大约5个项目通过审批进入特批临床试验或I、Ⅱ期临床试验。

答案:DNA在复制过程中一旦出现了错配,细胞能通过准确的错配修复系统识别新合成链中的错配,该系统识别母链的依据来自Dam甲基化酶,它能使位于5'-GATC序列中腺苷酸的N6位甲基化。一旦复制叉通过复制起始位点,母链就会在开始DNA合成前几秒至几分钟内,被甲基化。此后,只要两条DNA链上碱基配对出现错误,错配修复系统就会根据“保留母链,修复子链”的原则,找出错误碱基所在的DNA链,并在对应于母链甲基化腺苷酸上游鸟苷酸5'位置切开子链,再根据错配碱基相对于DNA切口的方位启动修复途径,合成新的子链片段。[考点]DNA的错配修复。DNA在复制过程中一旦出现了错配,细胞能通过准确的错配修复系统识别新合成链中的错配并加以校正,DNA子链中的错配几乎完全能被修正。错配修复对DNA复制忠实性的贡献力达102~103。

1、光修复:

指细胞在酶的作用下,直接将损伤的DNA进行修复。修复是由细菌中的DNA光解酶完成,此酶能特异性识别紫外线造成的核酸链上相邻嘧啶共价结合的二聚体,并与其结合,这步反应不需要光;

结合后如受300-600nm波长的光照射,则此酶就被激活,将二聚体分解为两个正常的嘧啶单体,然后酶从DNA链上释放,DNA恢复正常结构。

2、切除修复:

(1)细胞内有多种特异的核酸内切酶,可识别DNA的损伤部位,在其附近将DNA单链切开,再由外切酶将损伤链切除,由聚合酶以完整链为模板进行修复合成,最后有连接酶封口;

(2)碱基脱氨形成的尿嘧啶、黄嘌呤和次黄嘌呤可被专一的N-糖苷酶切除,然后用AP核酸内切酶打开磷酸二酯键,进行切除修复。DNA合成时消耗NADPH合成胸腺嘧啶,可与胞嘧啶脱氨形成的尿嘧啶相区别,提高复制的忠实性。RNA是不修复的,所以采用“廉价”的尿嘧啶;

(3)切除修复不需光照,也称暗修复。大肠杆菌中有UvrABC系统,可切除修复嘧啶二聚体。人体缺乏相应系统则发生“着色性干皮病”,皮肤干燥,有色素沉着,易患皮肤癌。可加入T4内切酶治疗。

3、诱导修复:

DNA严重损伤能引起一系列复杂的诱导效应,称为应急反应,包括修复效应、诱变效应、分裂抑制及溶原菌释放噬菌体等。细胞癌变也可能与应急反应有关。应急反应诱导切除和重组修复酶系,还诱导产生缺乏校对功能的DNA聚合酶,加快修复,避免死亡,但提高了变异率。

单链DNA诱导重组蛋白A,可水解LexA蛋白,使一系列基因得到表达,如RecA、UvrABC、SOS修复所需的酶等,产生应急反应。应急反应可作为致癌物的简易检测方法。采用缺乏修复系统、膜透性高的Ecoli突变株,并添加鼠肝匀浆液。

扩展资料:

DNA损伤的原因:

DNA存储着生物体赖以生存和繁衍的遗传信息,因此维护DNA分子的完整性对细胞至关紧要。外界环境和生物体内部的因素都经常会导致DNA分子的损伤或改变,而且与RNA及蛋白质可以在细胞内大量合成不同,一般在一个原核细胞中只有一份DNA,

在真核二倍体细胞中相同的DNA也只有一对,如果DNA的损伤或遗传信息的改变不能更正,对体细胞就可能影响其功能或生存,对生殖细胞则可能影响到后代。 

-DNA修复

  直接修复(direct repair),核苷酸切除修复(excision repair)、碱基切除修复(base excision repair)和错配修复(mismatch repair)。

  1直接修复(direct repair)

  是通过一种可连续扫描DNA,识别出损伤部位的蛋白质,将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

  一些蛋白质可以识别和修复某种损伤的核苷酸和错配的碱基,这些蛋白可以连续监测DNA。胸腺嘧啶二聚体就可以通过直接修复机制修复。胸腺嘧啶二聚体是紫外线辐射造成的。在所有原核生物和真核生物中都存在一种光激活酶(photoreactivating enzyme),在可见光存在下,这种酶可以结合胸腺嘧啶二聚体引起的扭曲双螺旋部位,催化两个胸腺嘧啶碱基再生,正常的A-T碱基对重新形成,然后光复活酶从已修复好的DNA上脱落。

  2核苷酸切除修复(excision repair)

  通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切除损伤区,然后在DNA聚合酶的作用下,以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。

  形成胸腺嘧啶二聚体会引起DNA双螺旋结构的变形,这样的损伤也可以通过核苷酸切除系统修复。修复系统中的主要酶ABC切除核酸酶。给出了ABC切除核酸酶修复DNA损伤的过程。首先ABC切除核酸酶从损伤部位的两侧切去含有损伤的DNA链。然后,解旋酶除去内切酶切点之间的DNA片段,有时DNA片段由外切酶降解,产生单链缺口。然后在DNA聚合酶的催化下按照互补链填充缺口,切口最后通过DNA连接酶连接。

  3碱基切除修复DNA

  糖基化酶(DNA glycosylases)能识别DNA中的不正确碱基,如尿嘧啶、次黄嘌呤和黄嘌呤,这些碱基是由胞嘧啶、腺嘌呤和鸟嘌呤脱氨形成的。DNA糖基化酶可以切断这种碱基N-糖苷键,将其除去,形成的脱嘌呤或脱嘧啶部位通常称为"abasic"部位或AP位点。然后由AP内切核酸酶(AP endonucleases)切去含有AP位点的脱氧核糖-5-磷酸,在DNA聚合酶作用下重新放置一个正确的核苷酸,最后通过DNA连接酶将切口封闭。每种DNA糖基化酶通常对一种类型的碱基损伤特异。

  4错配修复(mismatch repair)

  在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。这种修复方式的过程是:识别出下正确地链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用,合成正确配对的双链DNA。

  错误的DNA复制会导致新合成的链与模板链之间的产生错误的碱基配对。这样的错误可以通过Ecoli中的3个蛋白质(MutS、MutH和MutL)校正。该修复系统只校正新合成的DNA,因为新合成DNA链的GATC序列中的A(腺苷酸残基)开始未被甲基化。GATC中A甲基化与否常用来区别新合成的链(未甲基化)和模板链(甲基化)。这一区别很重要,因为修复酶需要识别两个核苷酸残基中的哪一个是错配的,否则如果将正确的核苷酸除去就会导致突变。(右图)说明了MutS、MutH和MutL三种蛋白质是如何校正新合成DNA中的一个错配错误的。未甲基化的GATC序列不需要紧靠着错配碱基,因为错配碱基与GATC序列之间的间隔的DNA序列可以被外切核酸酶切除,是从3ˊ还是从5ˊ方向切除取决于不正确碱基的相对位置。

        突变与癌症的发生均包含细胞DNA损伤过程。人类细胞中的DNA每天都会由于外部(外源)和内部(内源)的代谢进程而遭受成千上百次损伤。细胞基因组的改变可能导致DNA转录过程出现错误,进而通过翻译过程影响到信号转导和细胞功能必需的蛋白质。如果有丝分裂之前这些基因组突变尚未完成修复,则还会进一步遗传给子代细胞。一旦细胞丧失了有效修复DNA损伤的能力,就可能发生三种反应:细胞衰老、细胞凋亡和细胞癌变( 图1 )。细胞可能会衰老,即进入不可逆的休眠状态。2005年,多家实验室报道癌症细胞在体内和体外均会发生衰老现象,停止有丝分裂,阻止细胞进一步演化。细胞可能发生凋亡。DNA损伤达到一定程度,就可能触发一条凋亡信号转导通路,迫使细胞进入程序性细胞死亡过程。细胞可能会恶变,即出现永生化的性质并开始不受控制地分裂。

        为了代偿细胞内可能发生的不同程度和类型的DNA损伤,细胞发展出多种不同的修复机制,包括错配、碱基切除,以及核苷酸切除修复机制。不同修复机制之间很少出现冗余处理。如果出现损伤过度,细胞就不再耗费能量来有效修复损伤之处,而很可能发展为凋亡或衰老。细胞能够有效修复的比例与细胞类型和细胞年龄等因素息息相关。

多年来,外源性损伤一直被认为是致癌DNA突变的首要来源。不过,Jackson与Loeb提出内源性DNA损伤也可能是致癌突变的重要来源 5  。来自环境与细胞的诱因均可导致相似类别的DNA损伤。

DNA会受到物理与化学诱变剂的影响。物理诱变剂主要源自各种放射源,其中包括太阳的紫外线(200-300 nm波长)。紫外线会生成共价键,将DNA链中相邻的嘧啶(胞嘧啶与胸腺嘧啶)碱基交联起来。电离射线(X射线)会在细胞中产生自由基,这些自由基会制造活性氧(ROS)并导致双螺旋中的单链或双链断裂,从而引发DNA突变。化学诱变剂能够攻击DNA碱基上共价结合的烷基基团;能够促使DNA碱基发生甲基化或乙基化反应的氮芥类化合物即是DNA烷化剂的一个实例。前致癌物为一类化学惰性的前体物质,能够通过代谢反应转化为具有高度活性的致癌剂。这些致癌剂能够与DNA发生反应,形成DNA络合物,即附着在DNA之上的化学实体。苯并芘为一类多芳烃的杂环类物质,本身并非致癌物。但它可通过由细胞色素P450酶介导的两个连续氧化反应,生成苯并芘二醇环氧化物(BPDE),后者则是一种致癌代谢物,能够介导共价DNA络合物的形成( 图2 )。

        内源代谢和生化反应也可能造成DNA损伤,但人们对其中的一些机制还知之甚少 6 。水解反应可能部分或彻底切割DNA链上的核苷酸碱基。连接嘌呤碱基(腺嘌呤或鸟嘌呤)与脱氧核糖磷酸链的化学键可能在脱嘌呤过程中自发断裂。哺乳动物细胞中每天发生约10000次脱嘌呤活动 7 。脱嘧啶活动(在胸腺嘧啶或胞嘧啶的位置丢失嘧啶类碱基)也可能发生,但频率要比脱嘌呤活动低20~100倍。

        细胞中也会发生脱氨作用,即腺嘌呤、鸟嘌呤与胞嘧啶环上的氨基丢失,分别形成次黄嘌呤、黄嘌呤与尿嘧啶。DNA修复酶能够识别和纠正这些非天然的碱基,但未被纠正的尿嘧啶碱基在后续的DNA复制过程中可能会被误读为胸腺嘧啶,随之形成C→T点突变。

        在细胞内,与S-腺苷甲硫氨酸(SAM)的反应可以介导DNA甲基化。SAM是一类细胞内代谢中间体,包含一个具有高度活性的甲基基团。在哺乳动物细胞中,甲基化发生在胞嘧啶碱基的胞嘧啶环5号位置上,进而形成了一个鸟嘌呤碱基,即序列CpG。突变错误的一个重要来源是甲基化产物5-甲基胞嘧啶的自发脱氨基作用。氨基丢失导致形成胸腺嘧啶碱基,从而无法被DNA修复酶识别为异常碱基。这一碱基置换作用在DNA复制过程中被保留,形成C→T点突变(参见 图3 )。

        正常的代谢进程会生成活性氧(ROS),后者会通过氧化作用修饰DNA碱基。嘌呤与嘧啶类碱基均会受到氧化作用的影响,最为常见的突变是鸟嘌呤被氧化为8-氧代-7,8-二氢鸟嘌呤,形成8-氧代脱氧鸟苷(8-oxo-dG)。8-oxo-dG能够与脱氧腺苷而非预期的脱氧胞苷相配对。如果这一错误未被错配修复酶识别并纠正,则随后复制出的DNA产物就会包含一个C→A点突变。ROS也可能会介导脱嘌呤、脱嘧啶作用以及DNA单/双链的断裂。

在细胞周期S期,DNA复制过程中还可能引入其他类型的基因组突变。复制模板DNA的聚合酶有少量但不可忽视的错误率,会将错误碱基按照沃森-克里克配对原则整合进合成链中,与模板DNA相配。化学上发生改变的核苷酸前体也可能被聚合酶整合进入DNA合成链,代替正常碱基。此外,聚合酶在复制含有大量重复核苷酸或重复序列(微卫星区域)的DNA区段时,容易发生“打滑(stuttering)”现象。这一“打滑”的酶学现象是由于链之间发生滑动所致,此时模板与复制链之间可能出现的滑动会导致两者之间难于对准。其结果是聚合酶不能准确插入模板DNA指定数量的核苷酸,导致子链中的核苷酸过多或过少。

单链与双链DNA可能发生断裂。单链断裂可能由DNA脱氧核糖磷酸酯链上的脱氧核糖基团损伤引起。断裂也可能发生在碱基切除修复途径中AP-内切酶1去除脱氧核糖磷酸基团之后的一个中间步骤 8 。发生单链断裂后,核苷酸碱基与脱氧核糖骨架都会从DNA结构中丢失。双链断裂经常出现在细胞通过S期传代过程中,此时DNA发生解螺旋并成为复制的模板,因此更容易发生断裂。

DNA修复机制

当细胞有能力进入凋亡或衰老状态时,这些细胞活动都可视为细胞做出的最后调整。对于任一种类的DNA损伤而言,细胞都进化出特定的方法来针对性地修复,或清除损伤类化合物。

O6-甲基化鸟嘌呤DNA甲基转移酶(MGMT;DNA烷基转移酶)能够从DNA的鸟嘌呤碱基结构上剪切甲基和乙基加合物。这一反应并非催化(酶学)反应,而是化学计量(化学的)反应,每去除一个加合物,就消耗一个MGMT分子。经过基因工程改造而过表达MGMT的细胞对于癌症具有更强的耐受性,这很可能是因为它们能够消除大量的烷化损伤。Niture等人最近的一篇研究表明,使用半胱氨酸/谷胱甘肽促进药物与天然抗氧化剂可提升MGMT的表达水平 9 。

        聚合酶-δ等含有校正活性的DNA聚合酶主要参与复制易错性修复。当检测到错误时,这些酶会暂停DNA的复制过程,回头去除DNA子链上的核苷酸,直至错误掺入的核苷酸消除后,再重新开始正向的复制过程。对Pold1基因双拷贝点突变小鼠的研究数据表明,相对于野生型或单拷贝突变小鼠,此类小鼠的DNA聚合酶-δ校准活性缺失,且上皮性肿瘤发病几率明显上升 10 。

        错配切除修复(MMR)酶能够进一步纠正复制过程中DNA聚合酶校正活性未检测到的错误。MMR酶能够切除子链DNA上的错误核苷酸,并将母链DNA作为正确的模板,通过W-C配对来修复该链 11  。这一修复过程对于复制微卫星区域时所产生的错误至关重要,因为DNA聚合酶的校正活性不会检测出此类错误。在有限程度内,MMR酶类还能够纠正由DNA氧化或烷化所导致的多种碱基对异常。这些突变包括含有O6甲基化鸟嘌呤与8氧鸟嘌呤的修饰碱基对,以及致癌剂和顺式铂氨加合物 12,13 。人类错配切割修复基因MSH2和MLH1的突变与遗传性非息肉病性结直肠癌(HNPCC)综合症有关 14 。

碱基切除修复与核苷酸切除修复

碱基切除修复(BER)过程涉及多种可切割和替换单一损伤核苷酸碱基的酶。由内源氧化和水解作用所引发的不良碱基修饰主要通过BER酶进行修复。DNA糖基化酶能够切割核苷酸碱基与核糖之间的化学键,释放完整的DNA核糖磷酸链,不过这一过程会形成一个无嘌呤或无嘧啶(AP)位点。8-氧鸟嘌呤DNA糖基化酶I(Ogg1)能够去除7,8-二氢-8-氧鸟嘌呤(8-oxoG),后者是一种由活性氧介导生成的碱基突变。人类OGG1基因的多态性与肺癌和前列腺癌等多种癌症患病风险相关。尿嘧啶DNA糖基化酶(另一种BER酶)能够切除胞嘧啶脱氨作用的尿嘧啶产物,防止之后形成C→T点突变 15 。N-甲基嘌呤DNA糖基化酶(MPG)能够去除大量发生了修饰的嘌呤碱基 16 。

由BER酶介导生成以及源自脱嘧啶和脱嘌呤作用的DNA AP位点,可被AP-内切酶1(APE1)修复。APE1能够切割AP位点上的磷酸二酯链的5'位置。这样DNA链就出现了一个3'-羟基基团与一个5'-碱性脱氧核糖磷酸基团。DNA聚合酶β(Polβ)基于相应的W-C配对原则向DNA链中插入正确的核苷酸,并通过其相应的AP水解活性去除脱氧核糖磷酸基团。X射线修复交叉互补蛋白1(XRCC1)的存在对与III型DNA连接酶(LIG3)形成异源二聚体是必需的。支架蛋白XRCC1含有一个Polβ的非活性结合位点,从而将Polβ与LIG3酶一同带到修复位点 17 。与XRCC1和Polβ相互作用的Poly(ADP-核糖)聚合酶(PARP-1)是BER途径的必要组成部分 18,19 。修复的最后步骤由LIG3来完成,它将替代核苷酸的脱氧核糖基团与脱氧核糖磷酸骨架连接起来。这一途径被称为“短补丁BER”  20 。

另一条称为“长补丁BER”的替代途径能够置换最短2nt的核苷酸链。有报道表明该途径能置换10-12nt长度的核苷酸链 21,22 。长补丁BER需要增殖细胞核抗原(PCNA),后者能够作为重组酶的支架蛋白 23 。其他类型的DNA聚合酶(可能包括Polδ和Polε  24  )用于形成寡核苷酸瓣状结构侧翼。已有的核苷酸序列被瓣状核酸内切酶1(FEN1)所移除。寡核苷酸随后由DNA连接酶I(LIG1)连接至DNA上,填补缺口并完成修复工作 17 。有关短补丁与长补丁BER途径选择的确切细胞学机制仍处于研究阶段(参见 图4 ) 25 。

尽管BER可通过长补丁途径替代多个核苷酸,但短补丁与长补丁BER都是由单核苷酸损伤引发的,从而最大程度减少对DNA双螺旋结构的影响。核苷酸切除修复(NER)能够修复含至少两个碱基的核苷酸链损伤的,进而造成DNA结构的变形。除了修复较大DNA加合物和紫外线等引起的一系列外源性损伤外, NER还用于修复单链断裂 26 。 NER途径也可能用于修复氧化应激所致的损伤 27 。在哺乳动物细胞中,20多种蛋白参与了NER途径,其中包括XPA、XPC-hHR23B、复制蛋白A(RPA)、转录因子TFIIH、XPB与XPD DNA解旋酶、ERCC1-XPF和XPG、Polδ、Polε、PCNA和复制因子C 28 。在非小细胞肺癌细胞中,切除修复交叉互补(ERCC1)基因的过表达与细胞的顺铂耐受性有关 29  ,ERCC1基因过表达的细胞也具有增强的DNA修复能力 30 。全基因组NER(GGR)能够修复整个基因组内发生的损伤,而特异性NER途径“转录偶联修复(TCR)”能够在活性RNA聚合酶进行转录的过程中对基因进行修复。 31

DNA分子中的双链断裂会导致基因组序列丢失和重排。此类断裂可以通过非同源末端连接(NHEJ)或同源重组(HR),也称重组修复或模板辅助修复来进行修复。

当细胞处于S/G2阶段后期时,HR途径激活,模板被复制。这一机制基于与受损DNA区域通过着丝粒相连着一条相同或近乎相同的序列,该序列将作为修复模板。HR机制修复的双链断裂通常出现在复制机器试图通过一个单链断裂或非配对的位点,此时复制叉结构会出现折叠。

在细胞循环的其他节点,当姊妹染色单体不能作为HR模板时,细胞也可能启动非同源末端连接(NHEJ)机制。与HR途径不同,当这些断裂位点出现时,没有相应的模板链可供参考,细胞不再复制断裂的DNA区域。在NHEJ途径中,Ku异源二聚体蛋白位于两条断裂DNA链的末端位置,在没有模板指引的条件下对其进行修复,因此可能会丢失序列信息。多种酶类参与了重连过程,其中包括连接酶IV,XRCC4与DNA依赖的蛋白激酶(DNA-PK) 32,33 。NHEJ具有内在的致突变性,因为这一机制有赖于两条需要连接的DNA片段的单链尾之间的偶然性配对(称为微同源,microhomologies)(参见 图5 )。在高等真核生物中,DNA-PK对于NHEJ修复是必需的,无论是主要机制还是替代性的备选机制(D-NHEJ)均是如此 34 。

未来的应用

虽然DNA损伤是癌症细胞发生发展的关键因素,持续性损伤却是临床癌症治疗的组成部分,用于迫使恶性细胞进入凋亡或衰老进程。此种疗法中,博来霉素、丝裂霉素、顺铂等诸多化疗药物都很有效,因为它们能够让比周围组织复制更快的癌症细胞发生进一步的DNA损伤。细胞DNA修复机制是一把双刃剑:一方面它可以减少致癌突变从而帮助保持基因组的完整性;而在恶性细胞中,同样的机制却让细胞幸免于更多的DNA损伤以及持续发生不可控的生长。为了阻断癌症细胞中的这一存活机制,人们正尝试使用特定的DNA修复酶(包括MGMT、PARP和DNA-PK)的抑制剂来开展临床实验 35-38 。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2673844.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-21
下一篇2023-12-21

随机推荐

  • 28days化妆品效果如何

    28days化妆品效果不错伊思芙护肤品是是一家来自广州伊思芙生物科技有限公司生产的护肤品,属于作为国产护肤品牌,品牌知名度不高,但也凭其效果赢得大家一致好评,伊思芙护肤品主打酵母臻萃清润神仙水,护肤品质地很水润清爽,上脸不黏腻好吸收,纯天然

    2024-04-15
    47900
  • 深圳著名服装品牌有哪些?

    深圳巴洛克服饰设计有限公司(深圳市新兴南方皮革制品有限公司)http:wwwszbrccom英特爱尔服饰(深圳)有限公司http:wwwszentairecom深圳市汇天服饰有限公司http:wwwukoohkcom深圳市康贝尔

    2024-04-15
    33100
  • its skin伊思适合什么年龄?伊思适合多大年龄段?

    伊思其实是韩国很有名的药妆品牌,也是第一个用蜗牛霜和蜗牛成分做护肤品的品牌,而且这一做就风靡全球,成为了自己的明星产品,那么,its skin伊思适合什么年龄使用呢?下面我为大家介绍its skin伊思适合什么年龄二十五岁

    2024-04-15
    27000
  • 男生护肤品牌子前十名

    男生护肤品牌子前十名有欧莱雅男士、妮维雅、曼秀雷敦、碧欧泉、朗仕、AHC、吾诺、高夫GF、杰威尔、极男等。1、欧莱雅男士巴黎欧莱雅于2004年在法国推出的男士专业护肤系列,提供控油、劲能、保湿、抗皱等系列专业护肤方案,主要产品有男士洗面乳、

    2024-04-15
    36200
  • 伊思水乳怎么样

    伊思水乳一般指的是伊思蜗牛水乳,分别是伊思蜗牛水乳1号、伊思蜗牛水乳2号以及红参蜗牛水乳三种,针对三种使用的时间、肤质以及年龄都有着一定的区别,妹纸们切记不可以搞混淆。伊思蜗牛水乳1号:1号清爽型,白色瓶子,适合所有肤质,尤其适合偏油的肤质

    2024-04-15
    28600
  • 妮维雅630和玉兰油多效修护面霜哪个好

    妮维雅630。1、吸收性。妮维雅630适合任何肤质,且温和不刺激,日夜也都适用,玉兰油多效修护面霜吸收性不如妮维雅630。2、成分。玉兰油多效修护面霜美白效果太快太明显说明添加化学成分多,妮维雅630与之相比好些没那么多化学成分。妮维雅面霜

    2024-04-15
    35800
  • 李佳琦直播预告清单1.12 李佳琦直播预告1.12

    李佳琦直播预告清单112 李佳琦直播预告112。李佳琦1月12日晚间18点直播美妆专场,那么本次李佳琦会给我们带来什么商品呢下面小编给大家带来李佳琦1月12日直播的清单预告,一起来看看吧。李佳琦直播预告清单112一、直播时间李佳琦 1月12

    2024-04-15
    28500

发表评论

登录后才能评论
保存