呵呵,这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮eds=(∑q)/ε0稳恒磁场的高斯定理:∮bds=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮edl=0(l是l的小写,不是数字1)稳恒磁场的安培环路定律:∮bdl=(∑i)/μ0(∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。(全部都是自[f7159cn]
[hyyymjdcn]
[rhsyjcn]
[766scc o mcn]
[h8327cn]
[shwxxyjcn]
[r3205cn]
[asysxxcn]
[v1568cn]
[c9776cn]
[zeonlinec o mcn]
[twjfxc o mcn]
[s26397cn]
[tjhuapucn]
[g2381cn]
[hua-haocn]
[b3472cn]
[d1589cn]
[qqaucn]
[dbltc o mcn]
高斯定理适用于任何静电场。
高斯定律(Gauss'law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
高斯定理意义
高斯定理也称为高斯通量理论,或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
真空静电场的高斯定理:∮EdS=(∑Q)/ε0
稳恒磁场的高斯定理:∮BdS=0
这两个结论的不同揭示了静电场和磁场的一个差异:
静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。
用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。
静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)
稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)
这两个不同的结论又反映了静电场和磁场的另一个差异:
静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;
稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0
问题一:物理里高斯定理的意义。 高斯公式的物理意义――通量与散度:
PQR
散度:div,即:单位体积内所产生的流体质量,若div0,则为消失
xyz
通量:AndsAnds(PcosQcosRcos)ds,因此,高斯公式又可写成:divAdvAnds
问题二:高斯定理是什么意思 高斯定理(Gauss Law)也称为高斯公式(Gauss
Formula),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss'
law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由反平方定律决定的物理量,例如引力或者辐照度。
问题三:物理高斯定理的意义是什么? 高斯公式的物理意义――通量与散度:
PQR
散度:div,即:单位体积内所产生的流体质量,若div0,则为消失
xyz
通量:AndsAnds(PcosQcosRcos)ds,因此,高斯公式又可写成:divAdvAnds
问题四:物理知识中高斯定理的意义是什么 高斯公式的物理意义――通量与散度:
PQR
散度:div,即:单位体积内所产生的流体质量,若div0,则为消失
xyz
通量:AndsAnds(PcosQcosRcos)ds,因此,高斯公式又可写成:divAdvAnds
平板电容器由两个彼此靠得很近的平行极板(设为a和b)所组成,两极板的面积均为s,设两极板分别带有+q,-q的电荷。
每块极板的电荷密度为σ=q/s,除去极板的边缘效应,板间的电场看成是均匀电场,所以由高斯定理得两板间场强为e=σ/ε。
由s/d即平板电容公式可得出c=s/4πkd。
高斯定理,静电场的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。
高斯定理定义:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和与电常数之比。
电场强度公式:在匀强电场中,e=u/d
若知道一电荷受力大小可用,则e=f/q点电荷形成的电场得:e=kq/r^2(k为一常数,q为此电荷的电量,r为到此电荷的距离)可得出:随r的增大,点电荷形成的场强逐渐减小,不与r成正比,只与r^2成正比。
高斯定律:在静电场中,穿过任一封闭曲面的电场强度通量只与封闭曲面内的电荷的代数和有关,且等于封闭曲面的电荷的代数和除以真空中的电容率。
表明在闭合曲面内的电荷分布与产生的电场之间的关系。静电场中通过任意闭合曲面S的电通量等于该闭合面内全部电荷的代数和,与面外的电荷无关。
高斯定律的定义:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和。
由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。
欢迎分享,转载请注明来源:品搜搜测评网