一光学镀膜材料(纯度:999%-999999%)
1 高纯氧化物:
一氧化硅、SiO,二氧化铪、HfO2,二硼化铪,氯氧化铪,二氧化锆、ZrO2,二氧化钛、TiO2,一氧化钛、TiO,二氧化硅、SiO2,三氧化二钛、Ti2O3,五氧化三钛、Ti3O5,五氧化二钽、Ta2O5,五氧化二铌、Nb2O5,三氧化二铝、Al2O3,三氧化二钪、Sc2O3,三氧化二铟、In2O3,二钛酸镨、Pr(TiO3)2,二氧化铈、CeO2,氧化镁、MgO,三氧化钨、WO3,氧化钐、Sm2O3,氧化钕、Nd2O3,氧化铋、Bi2O3,氧化镨、Pr6O11,氧化锑、Sb2O3,氧化钒、V2O5,氧化镍、NiO,氧化锌、ZnO,氧化铁、Fe2O3,氧化铬、Cr2O3,氧化铜、CuO等。
2 高纯氟化物:
氟化镁、MgF2,氟化镱、YbF3,氟化钇、LaF3,氟化镝、DyF3,氟化钕、NdF3,氟化铒、ErF3,氟化钾、KF,氟化锶、SrF3,氟化钐、SmF3,氟化钠、NaF,氟化钡、BaF2,氟化铈、CeF3,氟化铅等。
4 混合料:
氧化锆氧化钛混合料,氧化锆氧化钽混合料,氧化钛氧化钽混合料,氧化锆氧化钇混合料,氧化钛氧化铌混合料,氧化锆氧化铝混合料,氧化镁氧化铝混合料,氧化铟氧化锡混合料,氧化锡氧化铟混合料,氟化铈氟化钙混合料等混合料
3 高纯金属类:
高纯铝,高纯铝丝,高纯铝粒,高纯铝片,高纯铝柱,高纯铬粒,高纯铬粉,铬条,高纯金丝,高纯金片,高纯金,高纯金粒,高纯银丝,高纯银粒,高纯银,高纯银片,高纯铂丝,高纯铪粉,高纯铪丝,高纯铪粒,高纯钨粒,高纯钼粒,高纯单晶硅,高纯多晶硅,高纯锗粒,,高纯锰粒,高纯钴,高纯钴粒,高纯钼,高纯钼片,高纯铌,高纯锡粒,高纯锡丝,高纯钨粒,高纯锌粒,高纯钒粒,高纯铁粒,高纯铁粉,海面钛,高纯锆丝,高纯锆,海绵锆,碘化锆,高纯锆粒,高纯锆块,高纯碲粒,高纯锗粒, 高纯钛片,高纯钛粒,高纯镍,高纯镍丝,高纯镍片,高纯镍柱,高纯钽片,高纯钽,高纯钽丝,高纯钽粒,高纯镍铬丝,高纯镍铬粒,高纯镧,高纯镨,高纯钆,高纯铈,高纯铽,高纯钬,高纯钇,高纯镱,高纯铥,高纯铼,高纯铑,高纯钯,高纯铱等
5 其他化合物:
钛酸钡,BaTiO3,钛酸镨,PrTiO3,钛酸锶,SrTiO3,钛酸镧,LaTiO3,硫化锌,ZnS,冰晶石,Na3AlF6,硒化锌,ZnSe,硫化镉。
6 辅料:
钼片,钼舟、钽片、钨片、钨舟、钨绞丝。
二、溅射靶材(纯度:999%-99999%)
1 金属靶材:
1 金属靶材:
镍靶、Ni、钛靶、Ti、锌靶、Zn、铬靶、Cr、镁靶、Mg、铌靶、Nb、锡靶、Sn、铝靶、Al、铟靶、In、铁靶、Fe、锆铝靶、ZrAl、钛铝靶、TiAl、锆靶、Zr、铝硅靶、AlSi、硅靶、Si、铜靶Cu、钽靶T、a、锗靶、Ge、银靶、Ag、钴靶、Co、金靶、Au、钆靶、Gd、镧靶、La、钇靶、Y、铈靶、Ce、钨靶、w、不锈钢靶、镍铬靶、NiCr、铪靶、Hf、钼靶、Mo、铁镍靶、FeNi、钨靶、W等。
2 陶瓷靶材
ITO靶、氧化镁靶、氧化铁靶、氮化硅靶、碳化硅靶、氮化钛靶、氧化铬靶、氧化锌靶、硫化锌靶、二氧化硅靶、一氧化硅靶、氧化铈靶、二氧化锆靶、五氧化二铌靶、二氧化钛靶、二氧化锆靶,、二氧化铪靶,二硼化钛靶,二硼化锆靶,三氧化钨靶,三氧化二铝靶五氧化二钽,五氧化二铌靶、氟化镁靶、氟化钇靶、硒化锌靶、氮化铝靶,氮化硅靶,氮化硼靶,氮化钛靶,碳化硅靶,铌酸锂靶、钛酸镨靶、钛酸钡靶、钛酸镧靶、氧化镍靶、溅射靶材等。
一光学镀膜材料(纯度:999%-999999%)
1 高纯氧化物:
一氧化硅、SiO,二氧化铪、HfO2,二硼化铪,氯氧化铪,二氧化锆、ZrO2,二氧化钛、TiO2,一氧化钛、TiO,二氧化硅、SiO2,三氧化二钛、Ti2O3,五氧化三钛、Ti3O5,五氧化二钽、Ta2O5,五氧化二铌、Nb2O5,三氧化二铝、Al2O3,三氧化二钪、Sc2O3,三氧化二铟、In2O3,二钛酸镨、Pr(TiO3)2,二氧化铈、CeO2,氧化镁、MgO,三氧化钨、WO3,氧化钐、Sm2O3,氧化钕、Nd2O3,氧化铋、Bi2O3,氧化镨、Pr6O11,氧化锑、Sb2O3,氧化钒、V2O5,氧化镍、NiO,氧化锌、ZnO,氧化铁、Fe2O3,氧化铬、Cr2O3,氧化铜、CuO等。
2 高纯氟化物:
氟化镁、MgF2,氟化镱、YbF3,氟化钇、LaF3,氟化镝、DyF3,氟化钕、NdF3,氟化铒、ErF3,氟化钾、KF,氟化锶、SrF3,氟化钐、SmF3,氟化钠、NaF,氟化钡、BaF2,氟化铈、CeF3,氟化铅等。
4 混合料:
氧化锆氧化钛混合料,氧化锆氧化钽混合料,氧化钛氧化钽混合料,氧化锆氧化钇混合料,氧化钛氧化铌混合料,氧化锆氧化铝混合料,氧化镁氧化铝混合料,氧化铟氧化锡混合料,氧化锡氧化铟混合料,氟化铈氟化钙混合料等混合料
3 高纯金属类:
高纯铝,高纯铝丝,高纯铝粒,高纯铝片,高纯铝柱,高纯铬粒,高纯铬粉,铬条,高纯金丝,高纯金片,高纯金,高纯金粒,高纯银丝,高纯银粒,高纯银,高纯银片,高纯铂丝,高纯铪粉,高纯铪丝,高纯铪粒,高纯钨粒,高纯钼粒,高纯单晶硅,高纯多晶硅,高纯锗粒,,高纯锰粒,高纯钴,高纯钴粒,高纯钼,高纯钼片,高纯铌,高纯锡粒,高纯锡丝,高纯钨粒,高纯锌粒,高纯钒粒,高纯铁粒,高纯铁粉,海面钛,高纯锆丝,高纯锆,海绵锆,碘化锆,高纯锆粒,高纯锆块,高纯碲粒,高纯锗粒, 高纯钛片,高纯钛粒,高纯镍,高纯镍丝,高纯镍片,高纯镍柱,高纯钽片,高纯钽,高纯钽丝,高纯钽粒,高纯镍铬丝,高纯镍铬粒,高纯镧,高纯镨,高纯钆,高纯铈,高纯铽,高纯钬,高纯钇,高纯镱,高纯铥,高纯铼,高纯铑,高纯钯,高纯铱等
5 其他化合物:
钛酸钡,BaTiO3,钛酸镨,PrTiO3,钛酸锶,SrTiO3,钛酸镧,LaTiO3,硫化锌,ZnS,冰晶石,Na3AlF6,硒化锌,ZnSe,硫化镉。
6 辅料:
钼片,钼舟、钽片、钨片、钨舟、钨绞丝。
二、溅射靶材(纯度:999%-99999%)
1 金属靶材:
1 金属靶材:
镍靶、Ni、钛靶、Ti、锌靶、Zn、铬靶、Cr、镁靶、Mg、铌靶、Nb、锡靶、Sn、铝靶、Al、铟靶、In、铁靶、Fe、锆铝靶、ZrAl、钛铝靶、TiAl、锆靶、Zr、铝硅靶、AlSi、硅靶、Si、铜靶Cu、钽靶T、a、锗靶、Ge、银靶、Ag、钴靶、Co、金靶、Au、钆靶、Gd、镧靶、La、钇靶、Y、铈靶、Ce、钨靶、w、不锈钢靶、镍铬靶、NiCr、铪靶、Hf、钼靶、Mo、铁镍靶、FeNi、钨靶、W等。
2 陶瓷靶材
ITO靶、氧化镁靶、氧化铁靶、氮化硅靶、碳化硅靶、氮化钛靶、氧化铬靶、氧化锌靶、硫化锌靶、二氧化硅靶、一氧化硅靶、氧化铈靶、二氧化锆靶、五氧化二铌靶、二氧化钛靶、二氧化锆靶,、二氧化铪靶,二硼化钛靶,二硼化锆靶,三氧化钨靶,三氧化二铝靶五氧化二钽,五氧化二铌靶、氟化镁靶、氟化钇靶、硒化锌靶、氮化铝靶,氮化硅靶,氮化硼靶,氮化钛靶,碳化硅靶,铌酸锂靶、钛酸镨靶、钛酸钡靶、钛酸镧靶、氧化镍靶、溅射靶材等。
B 硼 http://baikebaiducom/view/20686html
硼
百科名片
硼硼(péng),原子序数5,原子量10811。约公元前200年,古埃及、罗马、巴比伦曾用硼沙制造玻璃和焊接黄金。1808年法国化学家盖·吕萨克和泰纳尔分别用金属钾还原硼酸制得单质硼。硼在地壳中的含量为0001%。天然硼有2种同位素:硼10和硼11,其中硼10最重要。硼为黑色或银灰色固体。晶体硼为黑色,熔点约2300°C,沸点3658°C,密度234克/立方厘米;,硬度仅次于金刚石,较脆。
目录
基本信息
详细介绍
性状特点
硼的应用
其他说法发现过程:
元素描述:
元素辅助资料:
主要硼产品:
硼与人体健康
元素周期表·硼硼的发现简史
单质硼
单质硼的结构
单质硼的性质
单质硼的制备
三氧化二硼
三氧化二硼的制备与结构
三氧化二硼性质
硼酸和硼酸盐
硼酸的结构
硼酸的性质
硼砂的结构
硼砂的性质
三卤化硼
三卤化硼的制备
三卤化硼的性质
三卤化硼的结构
基本信息
详细介绍
性状特点
硼的应用
其他说法 发现过程:
元素描述:
元素辅助资料:
主要硼产品:
硼与人体健康
元素周期表·硼 硼的发现简史
单质硼
单质硼的结构
单质硼的性质
单质硼的制备
三氧化二硼
三氧化二硼的制备与结构
三氧化二硼性质
硼酸和硼酸盐
硼酸的结构
硼酸的性质
硼砂的结构
硼砂的性质
三卤化硼
三卤化硼的制备
三卤化硼的性质
三卤化硼的结构
展开 编辑本段基本信息
硼 拼音:péng 部首:石, 部外笔画:8, 总笔画:13 五笔86&98:DEEG 仓颉:MRBB 四角号码:17620 UniCode:CJK 统一汉字 U+787C 英文:Boron
编辑本段详细介绍
属于非金属元素,符号B(borum) 原子体积:(立方厘米/摩尔) 46
元素在海水中的含量:(ppm) 441 元素在太阳中的含量:(ppm) 0002 地壳中含量:(ppm) 950 莫氏硬度:93 氧化态: Main B+3 Other 化学键能: (kJ /mol) 元素周期性质
B-H 381 B-H-B 439 B-C 372 B-O 523 B-F 644 B-Cl 444 B-B 335 晶胞参数: a = 506 pm b = 506 pm c = 506 pm α = 5806° β = 5806° γ = 5806° 用途
电离能 (kJ/ mol) M - M+ 8006 M+ - M2+ 2427 M2+ - M3+ 3660 M3+ - M4+ 25025 M4+ - M5+ 32822 晶体结构:晶胞为三斜晶胞。
编辑本段性状特点
硼在室温下比较稳定,即使在盐酸或氢氟酸中长期煮沸也不起作用。硼能和卤族元素直接化合,形成卤化硼。硼在600~1000°C可与硫、锡、磷、砷反应;在1000~1400°C与氮、碳、硅作用,高温下硼还与许多金属和金属氧化物反应,形成金属硼化物。这些化合物通常是高硬度、耐熔、高电导率和化学惰性的物质,常具有特殊的性质。
编辑本段硼的应用
硼的应用比较广泛。硼与塑料或铝合金结合,是有效的中子屏蔽材料;硼钢在反应堆中用作控制棒;硼纤维用于制造复合材料等。由于硼在高温时特别活泼,因此被用来作冶金除气剂、锻铁的热处理、增加合金钢高温强固性,硼还用于原子反应堆和高温技术中。棒状和条状硼钢在原子反应堆中广泛用作控制棒。由于硼具有低密度、高强度和高熔点的性质,可用来制作导弹的火箭中所用的某些结构材料。硼的化合物在农业、医药、玻璃工业等方面用途很广。
编辑本段其他说法
元素名称:硼 元素原子量:1081 元素类型:非金属 原子序数:5 元素符号:B 元素中文名称:硼 元素英文名称:Boron 相对原子质量:1081 核内质子数:5 核外电子数:5 核电核数:5 质子质量:8365E-27 质子相对质量:5035 所属周期:2 所属族数:IIIA 摩尔质量:11 氢化物:B2H6(现在还没有发现BH3) 氧化物:B2O3 最高价氧化物化学式:B2O3 密度:234 熔点:23000 沸点:3658 热导率: W/(m·K) 274 声音在其中的传播速率:(m/S) 16200 外围电子排布:2s2 2p1 核外电子排布:2,3 颜色和状态:固体 原子半径:117 常见化合价:+3 发现人:戴维、盖吕萨克、泰纳 发现年代:1808年
发现过程:
1808年,英国的戴维和法国的盖吕萨克、泰纳,用钾还原硼酸而制得硼。
元素描述:
它是最外层少于4个电子的仅有的非金属元素。其单质有无定形和结晶形两种。前者呈棕黑色到黑色的粉末。后者呈乌黑色到银灰色,并有金属光泽。硬度与金刚石相近。无定形的硼密度23克/厘米3,(25-27℃);晶形的硼密度231克/厘米3,熔点2300℃,沸点2550℃,。在室温下无定形硼在空气中缓慢氧化,在800℃左右能自燃。硼与盐酸或氢氟酸,即使长期煮沸,也不起作用。它能被热浓硝酸和重铬酸钠与硫酸的混合物缓慢侵蚀和氧化。过氧化氢和过硫酸铵也能缓慢氧化结晶硼。上述试剂与无定形硼作用激烈。与碱金属碳酸盐和氢氧化物混合物共熔时,所有各种形态的硼都被完全氧化。氯、溴、氟与硼作用而形成相应的卤化硼。约在600℃硼与硫激烈反应形成一种硫化硼的混合物。硼在氮或氨气中加热到1000℃以上则形成氮化硼,温度在1800-2000℃是硼和氢仍不发生反应,硼和硅在2000℃以上反应生成硼化硅。在高温时硼能与许多金属和金属氧化物反应,生成金属硼化物。硼在600~1000°C可与硫、锡、磷、砷反应;在1000~1400°C与氮、碳、硅作用,高温下硼还与许多金属和金属氧化物反应,形成金属硼化物。这些化合物通常是高硬度、耐熔、高电导率和化学惰性的物质,常具有特殊的性质。 元素来源:在自然界中,硼只以其化合物形式存在着(像在硼砂、硼酸中,在植物和动物中只存在有痕量的硼),通常由电解熔融的氟硼酸钾和氯化钾或热还原它的其他化合物(如氧化硼)制得 制备方法有:硼的氧化物用活泼金属热还原;用氢还原硼的卤化物;用碳热还硼砂;电解熔融硼酸盐或其他含硼化合物;热分解硼的氢化合物上述方法所得初产品均应真空除气或控制卤化,才可制得高纯度的硼。 元素用途:它主要用于冶金(如为了增加钢的硬度)及核子学中,因为它吸收中子能力强 由于硼在高温时特别活泼,因此被用来作冶金除气剂、锻铁的热处理、增加合金钢高温强固性,硼还用于原子反应堆和高温技术中。棒状和条状硼钢在原子反应堆中广泛用作控制棒。由于硼具有低密度、高强度和高熔点的性质,可用来制作导弹的火箭中所用的某些结构材料。硼的化合物在农业、医药、玻璃工业等方面用途很广。
元素辅助资料:
天然含硼的化合物硼砂(Na2B4O7·10H2O)早为古代医药学家所知悉。我国西藏是世界上盛产硼砂的地方。 1702年法国医生霍姆贝格首先从硼砂制得硼酸,称为salsedativum,即镇静盐。1741年法国化学家帕特指出,硼砂与硫酸作用除生成硼酸外,还得到硫酸钠。1789年拉瓦锡把硼酸基列入元素表。1808年英国化学家戴维和法国化学家盖吕萨克、泰纳各自获得单质硼。硼的拉丁名称为 boracium,元素符号为B。这一词来自borax(硼砂)。 硼的应用比较广泛。硼与塑料或铝合金结合,是有效的中子屏蔽材料;硼钢在反应堆中用作控制棒;硼纤维用于制造复合材料等。
主要硼产品:
硼化物 三溴化硼 二硼化钛 二硼化铬 氮化硼 9999%六方氮化硼 999%六方氮化硼 硼合金 硼铜合金 硼钢合金 硼化物 (1)三溴化硼: 无色或稍带**的发烟液体,有强烈的刺激性臭味。临界温度300℃,折射率15312。 (2)二硼化钛: 二硼化钛为灰白色六方形晶体或粉末,无味。其熔点2980℃,密度45~452,硬度(Hi)3600。它具有优良的抗氧化性及导电性能。平均粒径D=4~8μ。 (3) 二硼化铬: 熔点1760℃,抗氧化性能好,高温强度大。
编辑本段硼与人体健康
食物来源 黄豆、葡萄干、杏仁、花生、榛子、枣、葡萄酒、蜂密,酒类,例如苹果酒和啤酒。 代谢吸收 有关硼的吸收代谢目前还未充分了解,膳食中很容易吸收,并大部分由尿排出,在血液中是与氧结合,为B(OH)3,和B(OH)4,硼酸与有机化合物的羟基形成酯化物。动物与人的血液中硼的含量很低,并与膳食中镁的摄入有关,镁摄入低时,血液中硼的含量就增加。硼可在骨中蓄积,但尚不清楚是何种形式。 生理功能 硼普遍存在于蔬果中,是维持骨的健康和钙、磷、镁正常代谢所需要的微量元素之一。对停经后妇女防止钙质流失、预防骨质疏松症具有功效,硼的缺乏会加重维生素D的缺乏;另一方面,硼也有助于提高男性睾丸甾酮分泌量,强化肌肉,是运动员不可缺少的营养素。硼还有改善脑功能,提高反应能力的作用。虽然大多数人并不缺硼,但老年人有必要适当注意摄取。 硼的生理功能还未确定,目前有两种假说解释硼缺乏时出现的明显而不同的反应,以及已知硼的生化特性。一种假说是,硼是一种代谢调节因子,通过竞争性抑制一些关键酶的反应,来控制许多代谢途径。另一种是,硼具有维持细胞膜功能稳定的作用,因而,它可以通过调整调节性阴离子或阳离子的跨膜信号或运动,来影响膜对激素和其他调节物质的反应。 被提出可能有的功能: 1维持骨质密度。 2预防骨质疏松。 3加速骨折的愈合。 4减轻风湿性关节炎症状。 需要人群 更年期女性,骨病患者应补充硼元素。 生理需要 目前尚未确定,但膳食中硼的摄入为05-35mg/d,需要量大于03mg/d。值得注意的是,当硼以硼酸类以外的形态应用时会致命,尤其在皮肤或黏膜有破损时,情况将更加严重。 过量表现 硼、硼酸、硼砂都是低毒类蓄积性毒物,每天口服100mg,可引起慢性中毒,肝、肾脏受到损坏,脑和肺出现水肿。 硼缺乏症 1生长发育缓慢可能与硼的缺乏有关。 2缺硼可能引起骨质疏松。 硼化 (Boronized)
编辑本段元素周期表·硼
硼,BORON,源自硼砂borax和碳carbon,1808年发现,硼是一种非金属,化合物以硼砂(四硼酸钠)和硼酸最为著名,后者是起清洁杀菌作用,对眼睛有益处的一种酸。美国的各种工业每年对硼的需要量,都在240,000t以上。在农业上,硼即可制成肥料,也是一种很好的除草剂。
硼的发现简史
尽管人们很久以前就和硼打交道,如古代埃及制造玻璃时已使用硼砂作熔剂,古代炼丹家也使用过硼砂,但是硼酸的化学成分19世纪初还是个谜。 1808年,英国化学家戴维(Sir Humphry Davy, 1778—1829)在用电解的方法发现钾后不久,又用电解熔融的三氧化二硼的方法制得棕色的硼。同年法国化学家盖-吕萨克(Joseph-Louis Gray-Lussac , 1778—1850)和泰纳(Louis Jacques Thenard,1777—1857)用金属钾还原无水硼酸制得单质硼。 硼被命名为Boron,它的命名源自阿拉伯文,原意是“焊剂”的意思。说明古代阿拉伯人就已经知道了硼砂具有熔融金属氧化物的能力,在焊接中用做助熔剂。硼的元素符号为B,中译名为硼。直至1981年,人们才认识到硼不仅是植物,而且是动物合人类所必须的元素。当时报道的一项早期研究结果提示了硼的必要性,在这项研究中发现,给雏鸡喂饲维生素D不足但并不完全缺乏的饲料时,硼能够改善其骨骼钙化。
单质硼
单质硼有多种同素异形体,无定形硼为棕色粉末,晶体硼呈灰黑色.单质硼的硬度近似于金刚石,有很高的电阻,但它的导电率却随着温度的升高而增大。关于单质硼,我们作如下介绍: 单质硼的结构 单质硼的性质 单质硼的制备
单质硼的结构
B原子的价电子结构是2s2px2py,它能提供成键的电子是2s2p,还有一个P轨道是空的。B原子的价电子少于价层电子数,在成键时,价电子未被充满,所以B原子是缺电子原子,容易形成多中心键。所谓多中心键就是指较多的原子靠较少的电子结合起来的一种离域的共价键。例如用一对电子将三个原子结合在一起,既称为三中心两电子键。 晶态单质硼有多种变体,它们都以B12正二十面体为基本的结构单元。这个二十面体由12个B原子组成,20个接近等边三角形的棱面相交成30条棱边和12个角顶,每个角顶为一个B原子所占据。 由于B12二十面体的连接方式不同,键也不同,形成的硼晶体类型也不同。我们仅介绍其中最普通的一种α-菱形硼。 α-菱形硼是由B12单元组成的层状结构,这是α-菱形硼晶格的俯视图和三中心键情况。由图中可以清楚的看到,α-菱形硼晶体中既有普通的σ键,又有三中心两电子键。许多B原子的成键电子在相当大的程度上是离域的,这样的晶体属于原子晶体,因此晶态单质硼的硬度大,熔点高,化学性质也不活泼。 在α-菱形硼晶格中,每个二十面体通过处在腰部的6个B原子以三中心两电子键与在同一平面内的相邻的6个二十面体连接起来,(图中虚线三角形表示三中心两电子键,键距203pm)。这种二十面体组成的片层,层面结合靠的是二十面体的上下各3 个B原子以6个正常的B—B共价键(即两中心两电子键,键长171pm)同上下两层的6个附近的二十面体相连接,3个在上一层,3个在下一层。 在硼的二十面体结构单元中,B12的36个电子是如下分配的:在二十面体内有13个分子轨道,用去26个电子;每个二十面体同上下相邻的6个二十面体形成6个两中心两电子共价键,用去了6个电子;在二十面体腰部的6个B原子与同平面上周围相邻的6个三中心两电子键,用去了6×2/3=4个电子。结果总电子数是26+6+4=36,所有的电子都已用于形成复杂的多面体结构。 一个三中心两电子键是由3个B原子以各自的一个sp杂化轨道重叠形成的,重叠的交角是120,形成了特有的[]三角棱面,这种闭合的三中心键的分子轨道能级图如下: 三个杂化原子形成一个成键分子轨道和两个反键分子轨道,在这个成键分子轨道里有一对电子。
单质硼的性质
晶态硼较惰性,无定形硼则比较活泼。 (1)与非金属作用 高温下B能与N2、O2、S、X2等单质反应,例如它能在空气中燃烧生成B2O3和少量BN, 在室温下即能与F2发生反应,但它不与H2作用。 (2)B能从许多稳定的氧化物(如SiO2,P2O5,H2O等)中夺取氧而用作还原剂。例如在赤热下,B与水蒸气作用生成硼酸和氢气: 2B+6H2O(g)==2B(OH)3+3H2↑ (3)与酸作用 B不与盐酸作用,但与热浓H2SO4,热浓HNO3作用生成硼酸: 2B+3H2SO4(浓)==2B(OH)3+3SO2↑ B+3HNO3(浓)==B(OH)3+ 3NO2↑ (4)与强碱作用 在氧化剂存在下,硼和强碱共熔得到偏硼酸盐: 2B+2NaOH+3KNO2==2NaBO2+3KNO2+H2O (5)与金属作用 高温下硼几乎能与所有的金属反应生成金属硼化物。它们是一些非整比化合物。组成中B原子数目越多,其结构越复杂。 无定形硼用于生产硼钢,硼钢的抗冲击性能好,又因为B有吸收中子的特性,硼钢不仅是制造喷气发动机的优质钢材,还用于制造原子反应堆的控制棒。
单质硼的制备
工业上制备一般有两种方法: (1)碱法 ①用浓碱液分解硼镁矿得偏硼酸钠: ②将NaBO2在强碱溶液中结晶出来,使之溶于水成为较浓的溶液,通入CO2调节碱度,浓缩结晶即得到四硼酸钠,即硼砂: ③将硼砂溶于水,用硫酸调节酸度,可析出溶解度小的硼酸晶体: ④加热使硼酸脱水生成B2O3: ⑤用镁或铝还原B2O3得到粗硼: (2)酸法 用硫酸分解硼镁矿一步制得硼酸: 此方法虽简单,但须耐酸设备等条件,不如减法好。 粗硼用盐酸氢氧化钠和氟化氢处理,可得纯度为95-98%的棕色无定形硼。 (3)碘化硼热解制碘化硼 将碘化硼在灼热(1000-1300K)的钽丝上热解,可达到纯度达9995%-菱形硼:
三氧化二硼
硼被称为亲氧元素,硼氧化合物有很高的稳定性。关于B2O3,我们介绍如下: 三氧化二硼的制备与结构 三氧化二硼性质
三氧化二硼的制备与结构
制备B2O3的一般方法是加热硼酸H3BO3使之脱水: 在高温下脱水可得玻璃态的B2O3,很难粉碎;在200℃以下减压缓慢脱水,可得白色粉末状B2O3,它是硼酸的酸酐,有很强的吸水性,在潮湿的空气中同水结合转化成硼酸。因此可以用作干燥剂。 X-射线结构测定表明,晶体状B2O3是由畸变的BO4四面体组成的六方晶格,而无定形B2O3是由平面三角形BO3的基本单元构成的。在1000℃以上气态B2O3分子是单分子,其构型是角形分子: 气态B2O3分子中键角B-O-B不固定。
三氧化二硼性质
(1)B2O3的熔点723K,沸点2338K。B2O3易溶于水,重新生成硼酸。但在热的水蒸气中则生成挥发性的偏硼酸HBO2,同时放热: B2O3(无定形)+3H2O(l)=2H3BO3(aq) (2)熔融的B2O3可以溶解许多金属氧化物而得到有特征颜色的片硼酸盐玻璃,这个反应可用于定性分析中,用来鉴定金属离子,称之为硼珠试验。例如: B2O3+CuO==Cu(BO2)2蓝色 B2O3+NiO==Ni(BO2)2 绿色 (3)B2O3与NH3在873K时反应可制得氮化硼(BN)x,其结构与石墨相同 (4)B2O3在873K时与CaH2反应生成六硼化钙CaB6,金属硼化物在电子工业中有重要用途。
硼酸和硼酸盐
关于硼酸和硼酸盐,我们介绍: 硼酸的结构 硼酸的性质 硼砂的结构 硼砂的性质
硼酸的结构
在H3BO3的晶体中,每个B 原子以三个sp杂化轨道与三个O 原子结合成平面三角形结构(平面三角形的BO3是构成B2O3,硼酸和多硼酸的基本结构单元),每个O 原子除以共价键与1个B原子和1个H原子相结合外,还通过氢键与另一个H3BO3单元中的H原子结合而连成片层结构,层与层之间则以微弱的范德华力相吸引。所以硼酸晶体是片状的,有滑腻感,可作润滑剂。
硼酸的性质
(1)H3BO3是白色片状晶体,微溶于水(273K时溶解度为635g/(100gH2O)),加热时,由于晶体中的部分氢键断裂,溶解度增大(373K时溶解度为276 g/(100gH2O))。 (2)H3BO3是个一元弱酸,Ka=58×10,它之所以有弱酸性并不是它本身电离出质子H,而是由于B是缺电子原子,它加合了来自H2O分子中OH的(其中O原子上的孤对电子对向B原子的空的P轨道上配位)而释放出H离子: (3)硼酸的这种电离方式表现出了硼化合物是缺电子特点。所以硼酸是一个典型的路易士酸,它的酸性可因加入甘露醇或甘油(丙三醇)而大为增强,例如硼酸溶液的pH≈5~6,加入甘油后,pH≈3~4。 表现出一元酸的性质,可用强碱来滴定。 (4)硼酸和甲醇或乙醇在浓H2SO4存在的条件下,生成硼酸酯,硼酸酯在高温下燃烧挥发,产生特有的绿色火焰,此反应可用于鉴别硼酸,硼酸盐等化合物。 (5)硼酸加热脱水分解过程中,先转变为偏硼酸HBO3,继续加热变成B2O3。 (6)在同极强的酸性氧化物(如P2O5或AsO5)或酸反应时, H3BO3被迫表现出弱碱性,如 B(OH)3+H3PO4===BPO4+3H2O
硼砂的结构
硼酸和硅酸相似,可以缩合为链状或环状的多硼酸x B2O3yH2O,所不同的是在多硅酸中有两种结构单元:一种即B2O3平面三角形,另一种系B原子以sp杂化轨道与O原子结合而成的BO4四面体。多硼酸不能稳定存在于溶液中,但多硼酸却很稳定,其中最重要的因素是四硼酸钠盐Na2B4O5(OH)48H2O,亦称之为硼砂。四硼酸根阳离子[B4O5(OH)4]的立体结构如下: 在[B4O5(OH)4]中,4配位的B原子是BO4四面体结构单元中的中心原子,而3配位的B原子是BO3平面三角形结构单元中的中心原子。即在四硼酸根中有两个BO3平面三角形和两个BO4四面体通过共用角顶O原子而联结起来的复杂结构。 四硼酸钠盐Na2B4O5(OH)48H2O,工业上一般把它的化学式写成Na2B4O7·10H2O。
硼砂的性质
(1)硼砂是无色半透明的晶体或白色结晶粉末。在空气中容易失水风化,加热到650K左右,失去全部结晶水成无水盐,在1150K熔成玻璃态。 (2)熔融状态的硼砂同BO3一样,亦有硼珠反应,也能溶解一些金属氧化物,并依金属的不同而显出特征的颜色,例如: Na2B4O7+CoO==2NaBO2Co(BO2)2 石蓝色 此反应可用于定性分析及焊接金属时除锈。 (3)硼砂是一个强碱弱酸盐,可溶于水,在水溶液中水解而显颇强的碱性: 也可写成: 硼砂水解时得到等物质的量的酸和碱,所以这个水溶液具有缓冲作用。硼砂易于提纯,水溶液又显碱性,在实验室中常用它配制缓冲溶液或作为标定酸浓度的基准物质。在工业上还可用做肥皂和洗衣粉的填料。
三卤化硼
三卤化硼是硼的特征卤化物,我们从以下三个方面介绍三卤化硼: 三卤化硼的制备 三卤化硼的性质 三卤化硼的结构
三卤化硼的制备
(1)以萤石,浓H2SO4和B2O3反应制备BF3: B2O3+3CaF2+3H2SO4==2BF3+3CaSO4+3H2O (2)用B2O3与HF酸作用,也可制得BF3: B2O3+6HF==2BF3+3H2O (3)用置换法,使BF3与AlCl3或AlBr3反应,可得BCl3或BBr3: BF3(g)+ AlCl3==AlF3+ BCl3 BF3(g)+ AlBr3==AlF3+ BBr3 (4)用卤化法,以B2O3和C为原料,通入Cl2气,也可制备BCl3: B2O3+3C+3Cl2==2BCl3+3CO (5)硼与卤素直接反应,也可得到三卤化硼: 2B+3X2==2BX3
三卤化硼的性质
三卤化硼的基本物理性质列于下表中: (1)三卤化硼都是共价化合物,熔、沸点均很低,并有规律地按F、Cl、B、I顺序而逐渐增高,它们的挥发性随相对分子质量的增大而降低。 (2)三卤化硼的蒸气分子均为单分子。 (3)BF3是无色的有窒息气味的气体,不能燃烧,BF3水解也得到与H2SiF6相当的氟硼酸HBF4: 氟硼酸是个强酸,仅以离子状态存在于水溶液中。 (4)BF3是缺电子化合物,是很强的路易斯酸,它可以同路易士碱如水、醚、醇、胺等结合生成加合物。由于BF3是个强电子接受体,它在许多有机反应中用作催化剂。 (5)给BCl3略加压力它即可液化,它是无色具有高折射率的液体。在潮湿的空气中发烟并在水中强烈水解: BCl3+3H2O==H3BO3+3HCl↑ 同BF3相比, BCl3是一个不太强的路易斯酸。(硼的卤化物在组成和物理性状方面和硅的卤化物很相似,化学性质也很相似。例如BCl3和SiCl4都强烈地水解,但水解机理不同。任何卤化物水解,必先同水分子配合。SiCl4能与水分子配位,是因为Si原子有d轨道,其配位数可高达6的缘故。而BCl3能与水分子配位,是因为它是缺电子分子。)
三卤化硼的结构
三卤化硼的分子结构都是平面三角形,表明B原子都是sp2杂化,如果把B-X键都当作单键来考虑,理论值与实测键长结果如下: 硼卤键长比计算值要短得多,显然是由于在B原子和卤原子之间形成了p-π配键。以BF3为例说明如下: 在B原子上有一个空的2p轨道没有参加杂化,它垂直于三角形的BF3分子平面,这个空轨道可以从三个F原子上的任何一个已经充满电子的对称性相同的p轨道接受一对电子,形成了一定程度的不定域的pπ配键,从而使B-F键有一定程度的复键的性质,结果使键长短于正常的单键。这样就使B原子周围有了8个电子。[1]
http://wenkubaiducom/searchfr=bk&word=B%20%C5%F0&lm=0&od=0
一、钽电容简介和基本结构
固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2 ,通过石墨层作为引出连接用。
钽电容性能优越,能够实现较大容量的同时可以使体积相对较小,易于加工成小型和片状元件,适宜目前电子器件装配自动化,小型化发展,得到了广泛的应用,钽电容的主要特点有寿命长,耐高温,准确度高,但耐电压和电流能力相对较弱,一般应用于电路大容量滤波部分。
下图为MnO2为负极的钽电容
下图为聚合物(Polymer)为负极的钽电容
二、生产工艺
按照电解液的形态,钽电解电容有液体和固体钽电解电容之分,液体钽电解用量已经很少,本文仅介绍固体钽电解的生产工艺。
固体钽电解电容其介质材料是五氧化二钽;阳极是烧结形成的金属钽块,由钽丝引出,传统的负极是固态MnO2,目前最新的是采用聚合物作为负极材料,性能优于MnO2。
钽电解电容有引线式和贴片两种安装方式,其制造工艺大致相同,现在以片钽生产工艺为例介绍如下。
1、生产工艺流程图
成型→烧结→试容检验→组架→赋能→涂四氟→被膜→石墨银浆→上片点胶固化→点焊→模压固化→切筋→喷砂→电镀→打标志→切边→漏电预测→老化→测试→检验→编带→入库
2、主要生产工序说明
21 成型工序:
该工序目的是将钽粉与钽丝模压在一起并具有一定的形状,在成型过程中要给钽粉中加入一定比例的粘接剂。
a)什么要加粘接剂?
为了改善钽粉的流动性和成型性,避免粉重误差太大,另外避免钽粉堵塞模腔。低比容粉流动性好可适当多加点粘接剂,高比容粉流动性差可适当少加点粘接剂。
b)加了太多或太少有什么影响?
如果太多:脱樟时,樟脑大量挥发,易导致钽坯开裂、断裂,瘦小的钽坯易导致弯曲。如果太少:起不到改善钽粉流动性的作用。拌好后的钽粉如果使用时间较长,因为樟脑是易挥发物品,可适量再加入一点粘和剂。樟脑的加入会导致钽粉中杂质含量增加,影响漏电。每天使用完毕,需将钽粉装入聚四氟乙烯瓶或真空袋内密封保存,以防樟脑挥发、钽粉中混入杂质、钽粉中吸附空气中的气体。
c)3、成型后不进行脱樟,可否直接放入烧结炉内进行烧结?
不行,因为樟脑是低温挥发物,如果直接放入烧结炉内进行烧结,挥发物会冷凝在炉膛、机械泵、扩散泵等排出管道内。
d)丝埋入深度太浅会有什么影响?
钽丝易拔出,或者钽丝易松动,后道工序在钽丝受到引力后,易导致钽丝跟部漏电流大。所以强调钽丝起码要埋入三分之二的钽坯高度以上,在成型时经常要检查。
e)粉重误差太大分有什么影响?
粉重误码差太大,导致容量严重分散,K(±10%)档的命中率会很低。成型时经常要称取粉重,误差要合格范围内(±3%)。如果有轻有重都是偏重或都是偏轻,可调整赋能电压或烧结温度。如果有轻有重,超过误差范围,要调整成型机,并将已压钽坯隔离,作好标识,单独放一个坩埚烧结。
f)密要均匀
不能有上松下紧,或下紧上松的现象。否则会导致松的地方耐压降低。钽坯高度要在允许差范围内,详细见工艺文件。
g)成型注意事项:
(1)粉重
(2)压密
(3)高度
(4)钽丝埋入深度
(5)换粉时一定要将原来的粉彻底从机器内清理干净。
(6)不能徒手接触钽粉、钽坯,谨防钽粉、钽坯受到污染。杜绝在可能有钽粉的部位加油。
(7)成型后的钽坯要放在干燥器皿内密封保存,并要尽快烧结,一般不超过24小时。
(8)每个坩埚要有伴同小卡,写明操作者、日期、规格、粉重等情况,此卡跟随工单一起流转,要在赋能后把数据记在工单上才能扔掉,以防在烧结、赋能、被膜出了质量问题可以倒追溯。
22烧结工序
a)烧结:在高温高真空条件下将钽坯烧成具有一定机械强度的高纯钽块。
b)目的:一是提纯,二是增加机械强度。
c)烧结温度对钽粉比容有什么影响?
随着烧结温度的提高,比容是越来越小,并不完全呈直线状。
因为随着温度的提高,钽粉颗粒之间收缩得越来越紧密,以至于有些孔径被烧死、堵塞,钽块是由多孔状的钽粉颗粒组成的,随着温度的提高,颗粒的比表面积越来越小,这样就导致钽粉的比容缩小。
d)烧结温度对钽粉的击穿电压有什么影响?
烧结温度越高,杂质去除得越干净,所以击穿电压随着烧结温度的提高而提高,并不是完全呈直线状。
e)烧结温度太高太低,对电性能有什么影响?
烧结温度太低一方面钽块的强度不够,钽丝与钽块结合不牢,钽丝易拔出,或者在后道加工时,钽丝跟部受到引力作用,导致跟部氧化膜受到损伤,出现漏电流大。烧结温度太高,比容与设计的比容相差甚多,达不到预期的容量,温度高对漏电流有好处,温度太高会导致有效孔径缩小,被膜硝酸锰渗透不到细微孔径中,导致补膜不透,损耗增加。
f)如果烧结后,试容出来容量小了怎么办?
(1) 算一下如果容量控制在-5%-----10%左右,计算出的赋能电压能否达到最低赋能电压
额定
电压
63
10
16
25
35
40
50
最低赋
能电压
18
30
50
80
110
140
170
(2) 如不行,只能改规格,如16V10UF,可改16V68UF,只要提高赋能电压,但是要看提高后的赋能电压是否会达到它的闪火电压,如果接近的话,那就会很危险也可以改25V68UF,但是计算出的赋能电压要达到所改规格的最低赋能电压。
g)如果烧结后,试容出来容量大了怎么办?
算一下如果容量控制在+5%-----+10%,计算出的赋能电压是否接近闪火电压?如果接近就不能流入后道;
如接近闪火电压,可改规格,如16V10U,可改16V15U,10V15U,但是计算出的赋能电压不能低于最低赋能电压,不能往高电压改规格。
实在不行只能返烧结,返烧结时要根据比容控制烧结温度。
h)高温时真空度不好,怎么处理?
高温时真空度如果突然不好,说明炉膛已漏气。应立即降温。因为氧气进入炉膛后,钽块、钽丝、坩埚隔热层、隔热罩都是钽制品,会跟氧发生氧化,出现发脆。
i)空烧
正常烧结一个月,需进行一次空烧,空烧温度应高于正常烧结温度100度以上;如果一直是烧的低温,突然要烧高温,应先进行空烧。
因为低温杂质吸附在炉膛和坩埚上,如果不空烧,突然烧高温,低温杂质会挥发到钽块上去,造成钽块漏电流大(有一批35V106 335 225估计就是因为空烧,装炉量太大,压制密度偏小所致)。
23 组架
a) 尺寸
钽块上端面到钢钢条边缘的距离50±02mm,如果偏差太大,会导致钽块上端面涂上硅胶或钽丝。
b) 注意要垂直。
c) 注意直径小于Φ20,放60条,大于Φ25,放行30条
d) 在拌同小卡上作好记录,每个架子都应该附有小卡,将成型、将成型、烧结的数据搬到小卡上,并在小卡上标注试容后的电压。随架子流传。
e) 烧结不同层次的,虽然电压一样,最好不要放在一个钢架上,以防容量整条整条分散
f) 钢架钢片一定要使用清洗后的,不要让钢架钢片受到太大的力,以防变形弯曲。
24 赋能工序
a) 赋能:通过电化学反应,制得五氧化二钽氧化膜,作为钽电容器的介质。
b) 氧化膜厚度:电压越高,氧化膜的厚度越厚,所以提高赋能电压,氧化膜的厚度增加,容量就下降
c) 氧化膜的颜色:不同的形成电压干涉出的氧化膜的颜色也不同,随着电压的升高,颜色呈周期性化。
d) 形成电压:经验公式(该公式只能在小范围内提高电压,如果电压提高的幅度很大,就不是很准确,要加保险系数)。
C1V1=C2V2
V2=C1V1/C2
C1------第一次容量平均值;
V1------第一次形成电压(恒压电压);
C2------要示的容量C2=K CR
(K 根据后道的容量收缩情况而定,可适时修改,一般情况下,容量小,后道容量损失较小,容量大,后道容量损失就大,低比容粉,容量损失较小,比容越高,后道容量损失就越大。通常,CR≤1UF,K=10;CR>1UF,K=104)
例如:35V105,中间抽测容量为108 、105 、 112 、 109 、 110 ,形成电压为95V,问需要提高几伏电压才能达到需求的容量
先求出中间抽测容量的平均值C1=109,V1=95
V2=109X95/10=1035(V),需提高9V
注意: 提高电压后,需恒压一小时,才可结束赋能。
e) 形成液温度:T1V1=T2V2
T1:第一次恒压温度;
V1:第一次恒压电压;
T2:第二次恒压温度;
V2:第二次恒压温度;
V2:T1V1/T2
注意公式中的温度K是绝对温度,需将摄氏温度加上273;
例如:第一次恒压温度为75度,恒压电压为90V,如果形成液的温度提高到85度,问形成电压要降低几伏?
V2=90×(75+273)/(85+273)=875V,需降低3V。
该公式不常用。但能指导为何温度低容量会变大。
形成温度越高,氧化膜质量越好。但是温度太高,水分挥发厉害,就要不停地加水,并且易导致形成液电导率不稳定。一般磷酸稀水溶液的恒压温度控制在70-90℃之间,经过大量的实践证明,如果恒压温度低于70℃,导致氧化膜质量严重不稳定,湿测漏电超差,如果形成液选用乙二醇系列,恒压温度可适当提高。
f) 电流密度:
低比容粉由于它的比表面积小,需要的升压电流密度就小,比容越高,比表面积就越大,需要的升压电流密度就大,一般C级粉,升压电流密度为10毫安/克,B级粉,升压电流密度为20毫安/克,高比容粉35-60毫安/克,视比容高低而定,详见工艺文件。
g)形成液:
电导率高,氧化效果好,但是形成液的闪火电压低;电导率低,氧化效果差,但是形成液的闪火电压高,阳极块不容易晶化、击穿。目前的磷酸稀水溶液只能适合形成电压200V以下,如果要形成200V以上的产品,应改用乙二醇稀水溶液,该溶液闪火电压高,抑制晶化能力强,但是乙二醇不容易煮洗干净,被膜损耗要微增加。一般情况下,CA42形成电压不会超过200V,只要用磷酸稀水溶液就可以了。
h)恒压时间:钽块越小,恒压时间越短,钽块越大,恒压时间越长,详见工艺文件。原则:结束电流要很小,基本上稳定不再下降为止,具体数值要看平时积累数据。
25、被膜
a) 被膜:通过多次浸渍硝酸锰,分解制得二氧化锰的过程。
b) 目的:通过高温热分解硝酸锰制得一层致密的二氧化锰层,作为钽电容器的阴极。
c) 分解温度:分解温度要适中,一般取200-270℃(指实际的分解温度),在这个温度下制得的二氧化锰的晶形结构是β型的,它的电导率最大。如果分解温度过高(大于300℃)或过低生成的是a型的二氧化锰或三氧化锰,它们的电阻率很大,导电性能没有β型的好,电阻率大,就是接触电阻大,在电性能上就反映损耗大。
d) 分解时间:产品刚进入分解炉时,能看到有一股浓烟冒出,那是硝酸锰剧烈反应生成的二氧化氮气体,过了2-3分钟,基本上看不到有烟雾冒出,说明反应已基本结束。分解时间过过短,反应还没有完全结束,补形成时会有锰离子溶出,这时补形成电流会很大,遇到这种情况,应立即关闭电源,重新分解一次,并将补形成液换掉;如果分解时间过长,会对氧化膜造成破坏,同样也会造成漏电流大。分解时间要灵活掌握,小产品时间短,大产品时间长,如果分解温度很高,要适当缩短分解时间,如果分解温度很低,要适当延长分解时间。
e) 硝酸锰浓度:
被膜时先做稀液,目的是稀硝酸锰容易渗透至钽粉颗粒的细微孔隙中,让里面被透,如果被不透,阴极面积缩小,被膜容量和赋能容量就会相差很多,这种情况也会反映在损耗上,损耗大。要求在做浓液之前,可解剖一个钽芯观察里面有无被透,如果没有被透,要增加一次稀液,低比容粉颗粒大,硝酸锰容易渗入,高比容粉颗粒小,不太容易渗入,小钽芯稀液次数少,大钽芯稀液次数要适当增加。
做浓液、强化液是为了增加二氧化锰膜层厚度,如果膜层没有一定的厚度,加电压时,在上下端面轮廓处等到地方容易产生类端放电,该处的氧化膜造成击穿,所以做强化液的时候,尽量要避免上小下大,或上大下小,膜层厚度要均匀。稀酸锰的酸度很重要,它会直接影响到硝酸锰的渗透性和分解质量,一般每做时要用试纸测试,达不到工艺要求,要加硝酸调配。滴入硝酸后要搅拌均匀。稀硝酸锰一个星期换一次,浓硝酸锰一个月换一次(也视产量和硝酸锰清洁程度)。
f) 中间形成液:
纯水修补的效果要差一点,它的导电离子很少,但是它的电阻大,对产品起到保护作用,钽芯不容易被击穿、烧焦,并且用它做补形成液,形成后没有残留物,不会造成损耗大。冰乙酸稀水溶液(004%),形成效果较好,形成后没有残留物,不会造成损耗大,但是它的闪火电压低,只适合做63V 10V 16V 的产品,冰乙酸很容易挥发,造成电导率不太稳定,所以用的话,要经常测电导率。磷酸稀水溶液(001%),形成效果好,闪为电压较高,可适合做25V 35V的产品,但是形成后有磷酸根离子残留在钽芯内,造成损耗要增加05左右乙二醇溶液,形成效果不是很好,闪火电压很高,形成后不会造成损耗大,适合做40V50V的大规格产品,该形成液成本很高,并且有毒,不宜多用,用后的形成液不要倒掉,可重复使用,但是用前要测试电导率在合格范围内,一般CA42用不到该形成液。
i) 发现问题的应急措施:
(1) 如果浸了强化液烘干后,还没有做最后的稀液、浓液,出来发现外观不符合要求,此时的强化层是很轻松的,只要将其浸泡在去离子水中,强化层会自动脱落。取出分解补形成后,可继续往下做。
(2) 如果强化后,已经做了稀液或浓液,发现漏电大,非要处理不可,可采用10毫升冰乙酸+30毫升双氧水+1000毫升去离子水浸泡12小时以上,此种处理方法对氧化膜的损伤较小,取出冲洗干净,再煮洗,赋能恒压2小时,顺序流人后道各工序。
j) 被膜最难掌握的是被膜炉的分解气氛(温度、风速、氧含量、蒸汽大小),另外进气孔、出气孔、回流孔及下面的分流板的调整也非常关键。现在只能通过试验来确认调整到较合适的位置。要保证有好的损耗更要保证有好的漏电流。一般氧含量控制在9——12%。
26石墨银浆切割
石墨银浆也叫辅助阴极,起到二氧化锰与焊锡连接的桥梁作用。原瓶石墨浓度在10%左右,实际使用时调制到4 5%左右为宜,如果太稀的话,因为石墨的渗透性很好,很容易往上爬,爬到上端面如果与钽丝接触,就会造成短路、漏电流大等情况,这种情况在当时还检测不出来,在点焊后钽丝跟部受力,点焊检测漏电流时合格率就相当低,老化时击穿非常严重。如果石墨太浓,石墨层和二氧化锰在做猛石墨时易分层,在后道包封、固化受到热引力作用,石墨层和二氧化锰层之间产生层间剥离,造成损耗增加。
要注意石墨的PH值必须大于9。
银浆也是同样的道理,太稀的话,浸渍的时候很好浸,但是在浸焊的时候,银层很容易被焊锡吞蚀掉,如果过浓,银层和石墨的接触不是太好,易造成接触电阻大,并且浸渍时产生拉丝。有采用浸两次银浆的厂家
银浆和石墨使用前一定要按工艺要求滚匀。
切割的质量往往被人们忽略。刀口的锋利程度、间隙、冲下来时的速度都会对漏电有影响。我们有因为切割质量不好导致10%的漏电大的试验结果。
27 点焊
焊点离根部越远越好,这样对根部氧化膜的破坏就越小。点焊位置、手势要正确,点焊浸焊的位置决定与包封后的外观关系很大。
点焊后抽测漏电流合格率的信息很重要,作为工艺技术员一定要去经常关心检测信息,如果发现不正,一定要追查原因,不然后面的质量无法控制,虽然该批产品已无法挽回了,但是,被膜流过的一段时间内会出现同样的问题。
经常有可能出现的问题:
a) 钽丝切割太短?焊点太靠近根部?点焊电压开得太高,钽丝过融了?
b) 是否钽丝脏?是硅胶没涂好?上端面有硅胶?上端面强化层太薄?组架尺寸不符合要求?钢片变形?模具磨损?
c) 石墨爬到端面上去了?强化层疏散导致石墨很容易往上爬?
d) 切刀有问题?
问题要一查到底,只有查清了问题,才能制定纠正和预防措施。
28 浸焊
温度控制在210℃(+10/-5℃)为宜:温度低,粘锡厚,底部有锡尖;温度高,粘锡少,温度太高,银层易被焊锡吞噬掉,时间控制在2秒左右,时间太长,银层易剥离。最好一次浸焊能成功,如果反复浸的话,银层、石墨都有可能剥离。
负极脚紧靠钽芯,不能短路或开路。负极起码达到钽芯的1/2以上,但不能伸出钽芯底部,不然包封后易外观废品。
控制助焊剂浓度,浓度太稀,上锡太慢,浓度浓,上锡快,但粘锡厚,容易导致石墨和二氧化锰层之间脱离。
29 老化
老化的目的是修补氧化膜和剔除早期失效产品。老化电源串联电阻的大小与老化的效果关系很大。如过大,达不到剔除早期失效产品的目的。如过小修补氧化膜的效果达不到,因产品上稍有次点就被击穿。老化后产品要放电24小时后再测量,否则会导致漏电测试不准。
210 电容器的三参数及测试方法
容量:注意频率是100HZ
损耗:注意频率是100HZ。
漏电流:IL判定标准为002CU(C为标称容量,U为测试电压)
211 几个专业词语解释:
成型后的为钽坯---------烧结后的称为钽块--------赋能后的称为阳极块-------石墨银浆后的称为钽芯-------点焊浸焊后的称为芯组--------包封后的称为电容器
品的质量将不能满足用户的基本要求。这样的产品因为抗浪涌能力较差,因此,使用在存在大的脉冲电流的电路将非常容易出现击穿现象
三、参数和选型钽电容器的漏电流和工作温度之间的关系
钽电容器的漏电流会随使用温度的增加而增加,此曲线称作漏电流温度曲线但不同厂家生产的相同规格的产品,常常由于生产工艺和使用的原材料及设备精度不同而高温漏电流变化存在非常大的差别高温漏电流变化大的产品在高温状态会由于自己产生的热量的不断累积而最终出现击穿现象高温漏电流变化小的产品在高温下长时间工作,产品的稳定性和可靠性将较高因此高温时产品漏电流变化率的大小可以决定钽电容器的可靠性 对于片式钽电容器,高温性能高低对可靠性有决定性的影响
31 漏电流VS温度:
32 漏电流VS电压:
33耗散因子(DF值)
耗散因子是决定电容内部功率耗散的一个物理量,越小越好,一般DF值随频率增加而增加。
损耗大小对产品使用影响及可靠性影响说明:损耗(DF值)是表征钽电容器本身电阻能够造成的无效功耗比例的一个参数,损耗较小的产品ESR也将较小。但损耗大小的微小差别不会对使用造成明显影响,对工作状态的产品的可靠性影响与容量偏差的影响相比较大,但与产品漏电流大小和ESR大小对使用时的可靠性的影响相比仍然较小(漏电流大小和ESR大小影响> 损耗大小影响 > 容量偏差的影响),滤波时如果产品的损耗较大,滤波效果差一些。同时,损耗较大的产品的抗浪涌能力也较差。
3 4 阻抗,等效串联阻抗(ESR)&感抗
ESR是决定电容滤波性能的一个重要指标,钽电容的ESR主要是由引脚和内部电极阻抗引起,是电容在高频上表现的一个很重要的参数,一般来讲,同容量,同电压值的钽电容的ESR要低于电解电容,但要高于多层陶瓷电容,ESR随着频率和温度的增加而减少,ESR=DF/WC。在谐振频率以下,电容的阻抗是电容的容抗和ESR的矢量和,在电容产生谐振以后,电容的阻抗是电容的感抗和ESR矢量和。
下图出示了电容的等效组成图:
其中:ESL:描叙的是引脚和内部结构的电感
RL:电容的漏电阻
Rd:由电介质吸收和内部分子极化引起的介电损耗
ESR与频率特性曲线:
电容阻抗Z与频率特性曲线:
在脉冲充放电电路,钽电容器会不断承受峰值功率可能达到几十安培的浪涌电流冲击,而且有时候充放电的频率也可能达到几百甚至几千HZ;在此类电压基本稳定,浪涌电流不断的电路,钽电容器的可靠性不光取决于产品耐压高低及伏安特性和高低温性能,还取决于产品的等效串联电阻ESR的高低,因为ESR值较大的产品在高浪涌时瞬间就会产生更多的热量积累,非常容易导致产品出现击穿。因此,钽电容器ESR值的高低直接可以决定产品的抗直流浪涌能力。另外; 不同ESR值的产品在存在交流纹波的电路里, 一定时间内产生的热量也与其ESR值高低成比例,ESR越高的产品在一定的时间内产生的热量也越高,因此,不同规格的产品由于阻抗ESR值不一样,具有不同的耐纹波电流能力 ESR低的产品不光在高频使用时容量衰减较少,滤波效果较好而且可以使用在更高频率的电路,同时因为它具有更大的抗浪涌能力,也符合可靠性要求较高的不断通过瞬时大电流的脉冲充放电电路的基本要求
本文整理自:
《钽电容知识总结(结构、工艺、参数、选型)》百度文库
《AVX钽电容生产介绍视频》AVX
《钽电容失效分析概述》无从考
稀有资源小金属上市公司全集(附股)
稀土矿类:广晟有色(广东,广西岭南地区稀土矿开采),中色股份(参与广东),江西铜业(江西,并有可能整合四川),漳州钨业(福建少量稀土),包钢稀土(独领北方),五矿发展(湖南,江西)
稀土加工类股票:中科三环,横店东磁,北矿磁材,天通股份,太原刚玉,中钢天源,首钢股份,银河磁体,鑫科材料(公司生产稀土铜带全国第一,出口量也第一),宁波韵升,安泰科技。科技含量最高的为中科三环,技术第一名。
稀贵金属类股票:金钼股份(整合钼矿预期,钼也为稀有金属类),吉恩镍业,云南褚业,中金黄金,山东黄金,锡业股份,漳源钨业,西部矿业(镁矿唯一,碳酸锂独步天下),东方钽业,盐湖钾肥、盐湖集团(钾矿唯一)
相关上市公司:
一、锑
1、辰州矿业(002155):公司是国内较大的从事金锑钨多金属生产的企业,锑锭和氧化锑的产量排名仅次于中国锡矿山闪星锑业公司,居全球第二;锑金属产量约占全球10%。2008年末,公司拥有和控制矿业权32个,其中:探矿权16个,面积34084平方公里;采矿权16个,面积40095平方公里。保有资源储量矿石量1,67716万
吨,同比增长6007%;金属量:金32,142千克,同比增长1051%;锑145,708吨,钨43,885吨。
2、ST梅雁(600868):公司拥有嵩溪银矿矿山以及相配套的选矿厂,嵩溪银矿储量丰富,拥有探明储量银矿
石35309万吨、锑矿石26295万吨。
3、株冶集团(600961):公司是国内最大的金属铟生产企业、重要的金属锑、镉生产企业。高纯锑主要用于制备In 等III-V族化合物半导体、高纯合金、热电转换材料等,也可用作单晶硅、单晶锗掺杂元素,金属铟、锑、镉等稀贵金属是生产薄膜太阳能电池重要原材料。
二、铍、钽、铌
东方钽业(000962):公司现有钽金属制品、铌金属制品、铍合金制品三大类型,35个系 列188个品种的产
品广泛应用于电子、冶金、钢铁、石油、化工、汽车、通讯、建筑、 交通、核能、航天、航空等高新技术领域。近年来又有其它钽金属、合金化合物、人工晶体、加工材、制品及铍合金加工材等系列的19种产品销往国际市场。高温难熔金属,高温抗氧化材料以及新材料产品开发取得重大成就。出口产品品种逐年增多,初步形成了全方位出口的格局。生产技术达世界先进水平。围绕钽、铌、铍等稀有金属新材料建立起了20多条生产线,成为了我国稀有金属新材料的主要供应基地。
公司是世界三大钽业公司之一,拥有550吨钽粉,80吨钽丝产能,市场占有率分别达到25%和60%。通过横向并购整合,公司已经形成钽制品、碳化硅刃料、氢氧化镍、钛材加工和房地产等多业务发展模式。
公司现有钽金属制品、铌金属制品、铍合金制品三大类型,35个系 列188个品种的产品广泛应用于电子、冶金、钢铁、石油、化工、汽车、通讯、建筑、 交通、核能、航天、航空等高新技术领域。 近年来又有其它钽金属、合金化合物、人工晶体、加工材、制品及铍合金加工材等系列的19种产品销往国际市场。高温难熔金属,高温抗氧化材料以及新材料产品开发取得重大成就。出口产品品种逐年增多,初步形成了全方位出口的格局。生产技术达世界先进水平。围绕钽、铌、铍等稀有金属新材料建立起了20多条生产线,成为了我国稀有金属新材料的主要供应基地。
三、钴
1、格林美(002340):公司是首家上市的将电子废弃物循环再造为塑木型材和钴镍行业中的超细钴粉、超细镍粉等高附加值产品,"变废为宝",以废旧资源的无限"城市矿山"为资源,摆脱了同行传统企业依赖有限自然矿山的制造模式。
2、中国中冶(601618):公司是全球最大的工程建设综合企业集团之一,主营业务横跨工程承包、资源开发、装备制造以及房地产开发等领域,在美国《财富》杂志2009年公布的世界500强企业中排名第380位。公司从事以金属矿产品为主的资源开发业务,是我国进行境外资源开发的重要力量,除在我国外,公司在境内外拥有
多处铁、铜、镍、锌、铅、钴、金等多种金属矿产资源,具备锌、铅、铜等金属的冶炼加工能力,还从事多晶硅的加工。
3、金岭矿业(000655):公司以铁精粉、铜精粉、钴精粉的生产销售和机械加工为主业,业绩稳定增长。目前公司的经营性资产是以铁矿石采选为主,其中优质资产包括铁山辛庄矿区、侯庄矿区、选矿厂等。
四、稀土(包括钪、钇和镧系共17种稀有金属)
1、包钢稀土(600111):公司控股股东包钢(集团)公司所属的白云鄂博铁矿拥有丰富的稀土资源。公司以开发利用世界上稀土储量最丰富的白云鄂博稀土资源为主要业务,拥有得天独厚的资源优势。稀土是化学元素
周期表中镧系元素中17种元素的统称,稀土工业和农业中应用越来越广泛。公司控股股东所属的白云鄂博铁矿拥有世界稀土资源的62%,占国内已探明储量的871%。包钢白云鄂博矿是世界瞩目的铁、稀土等多元素共生矿
,独特的资源优势造就了包钢在世界冶金企业中罕有的以钢铁和稀土为主业的独特产业优势,包头稀土研究院
是中国唯一一个国家级稀土专业研究机构。
2、广晟有色(600259):广晟有色先后成立或收购了龙南和利、河源矿业、河源高新、新丰开发、新丰高新、平远华企、新诚基以及广东富远等八家稀土类企业,拥有国内稀土分离最先进的生产技术,具有较为完善
的稀土产业链。公司现已拥有2张采矿权证,稀土保有储量71315万吨(按稀土氧化物计116万吨)。
3、中色股份(000758):集团公司的稀土资源铅、锌、稀土等业务主要由上市公司中色股份开展。公司控股100%子公司中色南方稀土(新丰)有限公司从事稀土矿勘探、开采、加工和经营;生产、制造稀土金属、稀土氧
化物、稀土化合物及稀土应用产品、稀土产品来料加工;公司控股72%子公司广东珠江稀土有限公司,该公司是
从事稀土全部15种元素分离及部分分离产品的延伸加工生产的外向型企业,在处理南方离子型矿的全国稀土企
业里,其生产规模及销售量均属前列。
4、五矿发展(600058):公司开发钨、稀土、锡、铋等有色金属资源,开展稀土、铋等的深加工,具有稀土
概念。
五、萤石
巨化股份(600160):公司是中国最大的氟化工生产基地,位于集聚了全国40%左右萤石资源的"中国氟都"浙江衢州 ,萤石(氟化钙 CaF2)是氟化工之根本,工业上用萤石和浓硫酸来制造氢氟酸,加热到250摄氏度时,这两种物质便反应生成氟化氢(HF),氢氟酸溶解氧化物能力极强,在电解铝中用作电解液,而锂电池电解液也是氟化物。巨化股份拥有六氟磷酸锂全套生产技术,并生产六氟磷酸锂上游原料无水氟化氢,巨化股份公司网站和巨化股份在浙江衢州统筹的招商引资项目中都有六氟磷酸锂项目,锂离子电池的兴旺将拉动上游电解液六氟磷酸锂的氟化工产业链,巨化股份正迎来机遇。
欢迎分享,转载请注明来源:品搜搜测评网