① 压力调节弹簧过松
② 流量调节螺钉调节不当,定子偏心方向相反
③ 液压泵转向相反
④ 油的粘度过高,使叶片运动不灵活
⑤ 液压泵转速太低,叶片不能甩出
⑥ 油量不足,吸油管露出油面吸入空气
⑦ 吸油管堵塞
⑧ 进油口漏气
⑨ 叶片在转子槽内卡死
以上维修排除故障方法仅供参考,想知道准确的故障部位及原因,可以送到液压维修中心,用第四代液压泵维修设备检测下,就清楚了。
摘要:数控车床是一种高精度、高效率的自动化机床。配备多工位刀塔或动力刀塔,机床就具有广泛的加工艺性能。正确的日常操作和维护保养能够使其使用操作更方便,而且延长其使用寿命,让我们一起来了解数控车床的维护保养事项吧。数控车床日常维护指南数控机床日常如何正确保养
数控车床的使用保养具体事项
1、选择合适的使用环境
数控车床的使用环境(如温度、湿度、振动、电源电压、频率及干扰等)会影响机床的正常运转,所以在安装机床时应严格要求做到符合机床说明书规定的安装条件和要求。在经济条件许可的条件下,应将数控车床与普通机械加工设备隔离安装,以便于维修与保养。
2、为数控车床配备数专业人员
这些人员应熟悉所用机床的机械部分、数控系统、强电设备、液压、气压等部分及使用环境、加工条件等,并能按机床和系统使用说明书的要求正确使用数控车床。
3、长期不用数控车床的维护与保养
在数控车床闲置不用时,应经常经数控系统通电,在机床锁住情况下,使其空运行。在空气湿度较大的霉雨季节应该天天通电,利用电器元件本身发热驱走数控柜内的潮气,以保证电子部件的性能稳定可靠。
4、数控系统中硬件控制部分的维护与保养
每年让有经验的维修电工检查一次。检测有关的参考电压是否在规定范围内,如电源模块的各路输出电压、数控单元参考电压等,若不正常并清除灰尘;检查系统内各电器元件联接是否松动;检查各功能模块使用风扇运转是否正常并清除灰尘。对于长期停用的机床,应每月开机运行4小时,这样可以延长数控机床的使用寿命。
5、机床机械部分的维护与保养
操作者在每班加工结束后,应清扫干净散落于拖板、导轨等处的切屑;在工作时注意检查排屑器是否正常以免造成切屑堆积,损坏导轨精度,危及滚珠丝杠与导轨的寿命;在工作结束前,应将各伺服轴回归原点后停机。
6、机床主轴电机的维护与保养
维修电工应每年检查一次伺服电机和主轴电机。着重检查其运行噪声、温升,若噪声过大,应查明原因,是轴承等机械问题还是与其相配的放大器的参数设置问题,采取相应措施加以解决。对于直流电机,应对其电刷、换向器等进行检查、调整、维修或更换,使其工作状态良好。检查电机端部的冷却风扇运转是否正常并清扫灰尘;检查电机各联接插头是否松动。
7、机床进给伺服电机的维护与保养
对于数控车床的伺服电动机,要在10~12个月进行一次维护保养,加速或者减速变化频繁的机床要在2个月进行一次维护保养。
8、机床测量反馈元件的维护与保养
检测元件采用编码器、光栅尺的较多,也有使用感应同下尺、磁尺、旋转变压器等。维修电工每周应检查一次检测元件联接是否松动,是否被油液或灰尘污染。
数控车床日常保养操作步骤和方法
注意:保养前,必须切断电源,然后按保养内容和要求进行日常保养作业。
1)先用清洗液兑水(清洗液兑水比例为1/10),然后用棉纱沾湿清洗液擦拭车床所有的油漆面部位,从上到下(内到外)擦拭。
2)用棉纱沾湿擦拭刀架、加工导轨面、丝杆等部位(戴橡胶手套以防伤手)。
3)用小毛刷清除电气箱、电机外壳灰尘,用干棉纱擦拭电气箱、电机外壳部位。
4)用干棉纱擦干车床各部位及集油盘。保持车床各部位无污渍、无水渍、无油渍。
5)用干棉纱擦拭工具箱、工作台等部位。保持各部位无污渍、无水渍、无油渍。
6)车床清洁后按润滑要求和润滑系统位置对车床润滑部位进行加油润滑。
7)按照5S管理要求清洁车床周边地面,车床及周边环境无异物、无油污、干净整洁。
数控车床日常保养清洁要求
1)下班前清扫干净车床无铁屑;保持车床各部位无污渍、无水渍、无油渍。
2)各导轨面和刀架加机油防锈;
3)清理工、量、夹具擦干净归位;打扫机床底下和周边卫生,工作环境干净。
4)每个工作班结束后,应关闭机床总电源。填写交接班记录本(机床运行情况)。
数控机床分两个部分:
一、机床本身的润滑工作要用抗磨液压油,国标46号抗磨液压油即可满足。
二、机床加工产品(工件),刀具的润滑,在切削、车削等工艺时,需要冷却和润滑,才能保证机床正常运作,这时需要用到切削油。所以抗磨液压油和切削油都是数控机床必备的油料。
奇比特润滑油液压油具有:优良的抗磨、防锈、防腐性能,有效延长设备的使用寿命;优良的抗泡性及空气释放性,使动力传递平衡、准确;很高的氧化安定性,延长了油品的使用寿命;良好的水解安定性和优异的水分离特性,保证了油品非常好的过滤性;高清洁性能有效防止由于固体颗粒所造成的伺服阀等操作故障的发生。
奇比特润滑油切削油具有:具有优良的乳化性和乳化安定性,加水能快速配成稳定的乳化液;乳化液有良好的润滑性、冷却性、清洗性,工件光洁度高,刀具寿命长;乳化液具有良好的防锈性,对有色金属物不良反应和腐蚀;安全性好,对人和环境无不良影响。
扩展资料
数控车床
数控车床是目前使用较为广泛的数控机床之一。它主要用于轴类零件或盘类零件的内外圆柱面、任意锥角的内外圆锥面、复杂回转内外曲面和圆柱、圆锥螺纹等切削加工,并能进行切槽、钻孔、扩孔、铰孔及镗孔等。
数控机床是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能,按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件。
机构简介
数控(英文名字:Numerical Control 简称:NC)技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。数控一般是采用通用或专用计算机实现数字程序控制,因此数控也称为计算机数控(Computerized Numerical Control ),简称CNC,国外一般都称为CNC,很少再用NC这个概念了。
它所控制的通常是位置、角度、速度等机械量和与机械能量流向有关的开关量。数控的产生依赖于数据载体和二进制形式数据运算的出现。1908年,穿孔的金属薄片互换式数据载体问世;19世纪末,以纸为数据载体并具有辅助功能的控制系统被发明;1938年,香农在美国麻省理工学院进行了数据快速运算和传输,奠定了现代计算机,包括计算机数字控制系统的基础。
数控技术是与机床控制密切结合发展起来的。1952年,第一台数控机床问世,成为世界机械工业史上一件划时代的事件,推动了自动化的发展。
数控技术也叫计算机数控技术(CNC,Computerized Numerical Control),它是采用计算机实现数字程序控制的技术。
这种技术用计算机按事先存贮的控制程序来执行对设备的运动轨迹和外设的操作时序逻辑控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入操作指令的存储、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成,处理生成的微观指令传送给伺服驱动装置驱动电机或液压执行元件带动设备运行。
传统的机械加工都是用手工操作普通机床作业的,加工时用手摇动机械刀具切削金属,靠眼睛用卡尺等工具测量产品的精度的。现代工业早已使用电脑数字化控制的机床进行作业了,数控机床可以按照技术人员事先编好的程序自动对任何产品和零部件直接进行加工了。这就是我们说的数控加工。数控加工广泛应用在所有机械加工的任何领域,更是模具加工的发展趋势和重要和必要的技术手段。
数控车床又称为CNC车床,即计算机数字控制车床,是目前国内使用量最大,覆盖面最广的一种数控机床,约占数控机床总数的25%。数控机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品。是机械制造设备中具有高精度、高效率、高自动化和高柔性化等优点的工作母机。
数控机床的技术水平高低及其在金属切削加工机床产量和总拥有量的百分比是衡量一个国家国民经济发展和工业制造整体水平的重要标志之一。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视并得到了迅速的发展。
数控车床自五十年代问世以来,由于在单件生产、小批量生产中,使用数控车床加工复杂形状的零件,不仅提高了劳动生产率和加工质量,而且缩短了生产准备周期和降低了对工人技术熟练程度的要求。因此它成了单件、小批量生产中实现技术革新和技术革命的一个重要的发展方向。世界各国也都在大力发展这种新技术。
我们知道,对于大批量生产的零件,使用自动化和半自动化的车床已能实现生产过程的自动化。但是,对于单件、小批量生产的零件,实现自动化一直是个难题。在过去相当长的一段时间内,总是无法圆满解决。尤其是在加工形状复杂的、加工精度要求高的零件,一直在自动化的道路上处于停顿状态。虽然有些应用仿形装置解决了一部分,但是实践证明,仿形车床还是不能彻底地解决这一问题。
数控车床(机床)的出现,为从根本上解决这一问题开辟了广阔的道路,所以成为机械加工中的一个重要发展方向。
特点
数控机床是数字控制机床的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件。
数控机床与普通机床相比,数控机床有如下特点:
加工精度高,具有稳定的加工质量;
可进行多坐标的联动,能加工形状复杂的零件;
加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;
机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);
机床自动化程度高,可以减轻劳动强度;
对操作人员的素质要求较高,对维修人员的技术要求更高。
选用原则
前期准备
确定典型零件的工艺要求、加工工件的批量,拟定数控车床应具有的功能是做好前期准备,合理选用数控车床的前提条件:满足典型零件的工艺要求。
典型零件的工艺要求主要是零件的结构尺寸、加工范围和精度要求。根据精度要求,即工件的尺寸精度、定位精度和表面粗糙度的要求来选择数控车床的控制精度。 根据可靠性来选择,可靠性是提高产品质量和生产效率的保证。数控机床的可靠性是指机床在规定条件下执行其功能时,长时间稳定运行而不出故障。即平均无故障时间长,即使出了故障,短时间内能恢复,重新投入使用。选择结构合理、制造精良,并已批量生产的机床。一般,用户越多,数控系统的可靠性越高。
机床附件及刀具
机床随机附件、备件及其供应能力、刀具,对已投产数控车床、车削中心来说是十分重要的。选择机床,需仔细考虑刀具和附件的配套性。
控制系统
生产厂家一般选择同一厂商的产品,至少应选购同一厂商的控制系统,这给维修工作带来极大的便利。教学单位,由于需要学生见多识广,选用不同的系统,配备各种仿真软件是明智的选择。
性能价格比来选择
做到功能、精度不闲置、不浪费,不要选择和自己需要无关的功能。
机床的防护
需要时,机床可配备全封闭或半封闭的防护装置、自动排屑装置。
在选择数控车床、车削中心时,应综合考虑上述各项原则。
基本组成
数控车床由数控装置、床身、主轴箱、刀架进给系统、尾座、液压系统、冷却系统、润滑系统、排屑器等部分组成。
数控车床分为立式数控车床和卧式数控车床两种类型。
立式数控车床用于回转直径较大的盘类零件车削加工。
卧式数控车床用于轴向尺寸较长或小型盘类零件的车削加工。
卧式数控车床按功能可进一步分为经济型数控车床、普通数控车床和车削加工中心。
经济型数控车床:采用步进电动机和单片机对普通车床的车削进给系统进行改造后形成的简易型数控车床。成本较低,自动化程度和功能都比较差,车削加工精度也不高,适用于要求不高的回转类零件的车削加工。
普通数控车床:根据车削加工要求在结构上进行专门设计,配备通用数控系统而形成的数控车床。数控系统功能强,自动化程度和加工精度也比较高,适用于一般回转类零件的车削加工。这种数控车床可同时控制两个坐标轴,即x轴和z轴。
车削中心
车削加工中心:在普通数控车床的基础上,增加了C轴和动力头,更高级的机床还带有刀库,可控制X、Z和C三个坐标轴,联动控制轴可以是(X,Z)、(X,C)或(Z,C)。由于增加了C轴和铣削动力头,这种数控车床的加工功能大大增强,除可以进行一般车削外,还可以进行径向和轴向铣削、曲面铣削、中心线不在零件回转中心的孔和径向孔的钻削等加工。
液压卡盘和液压尾架
液压卡盘是数控车削加工时夹紧工件的重要附件,对一般回转类零件可采用普通液压卡盘;对零件被夹持部位不是圆柱形的零件,则需要采用专用卡盘;用棒料直接加工零件时需要采用弹簧卡盘。对轴向尺寸和径向尺寸的比值较大的零件,需要采用安装在液压尾架上的活顶尖对零件尾端进行支撑,才能保证对零件进行正确的加工。尾架有普通液压尾架和可编程液压尾架。
通用刀架
数控车床可以配备两种刀架:
①专用刀架:由车床生产厂商自己开发,所使用的刀柄也是专用的。这种刀架的优点是制造成本低,但缺乏通用性。
②通用刀架:根据一定的通用标准(如VDI,德国工程师协会)而生产的刀架,数控车床生产厂商可以根据数控车床的功能要求进行选择配置。
铣削动力头
数控车床刀架上安装铣削动力头后可以大大扩展数控车床的加工能力。如:利用铣削动力头进行轴向钻孔和铣削轴向槽。
数控车床的刀具
在数控车床或车削加工中心上车削零件时,应根据车床的刀架结构和可以安装刀具的数量,合理、科学地安排刀具在刀架上的位置,并注意避免刀具在静止和工作时,刀具与机床、刀具与工件以及刀具相互之间的干涉现象。
机床组成
主机,他是数控机床的主体,包括机床身、立柱、主轴、进给机构等机械部件。他是用于完成各种切削加工的机械部件。
数控装置,是数控机床的核心,包括硬件(印刷电路板、CRT显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。
驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。
辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。
编程及其他附属设备,可用来在机外进行零件的程序编制、存储等。
自从1952年美国麻省理工学院研制出世界上第一台数控机床以来,数控机床在制造工业,特别是在汽车、航空航天、以及军事工业中被广泛地应用,数控技术无论在硬件和软件方面,都有飞速发展。
参考资料来源:-数控机床
液压系统常见故障及排除方法:
液压系统大部分故障并不是突然发生的,一般总有一些预兆。如噪声、振动、冲击、爬行、污染、气穴和泄漏等。如及时发现并加以适当控制与排除,系统故障就可以消除或相对减少。 一、 振动和噪声
(一) 液压元件的合理选择
(二) 液压泵吸油管路的气穴现象 排除方法:(1)增加吸油管道直径,减少或避免吸油管路的弯曲,以降低吸油速度,减少管路阻力损失。
(2)选用适当地吸油过滤器,并且要经常检查清洗,避免堵塞。 (3)液压泵的吸入高度要尽量小。自吸性能差的液压泵应由低压辅助泵供油。。
(4)避免油粘度过高而产生吸油不足现象。 (5)使用正确的配管方法。 (三)液压泵的吸空现象
液压泵吸空主要是指泵吸进的油中混入空气,这种现象不仅容易引起气蚀,增加噪声,而且还影响液压泵的容积效率,使工作油液变质,所以是液压系统不允许存在的现象。
主要原因:油箱设计和油管安排不合理,油箱中的油液不足:吸油管浸入油箱太浅:液压泵吸油位置太高:油液粘度太大:液压泵的吸油口通流面积过小,造成吸油不畅:滤油器表面被污物阻塞:管道泄漏或回油管没有浸入油箱而造成大量空气进入油液中。 排除方法:(1)液压泵吸油管路联接处严格密封,防止进入空气。 (2)合理设计油箱,回油管要以45度的斜切口面朝箱壁并靠近箱壁插入油中。流速不应应太高,防止回油冲入油箱时搅动液面而混入空气。油箱中要设置隔板。使油中气泡上浮后不会进入吸油管附近。 (3)油箱中油液要加到油标线所示的高度吸油管一定要浸入油箱的2/3深度处,液压泵的吸油口至液面的距离尽可能短,以减少吸油阻力。若油液粘度太高要更换低的油液。滤油器堵塞要及时清除污物。这样就能有效的防止过量的空气浸入。
(4)采用消泡性好的工作油液,或在油内加入消泡剂。 (四)、液压泵的噪声与控制 从液压泵的结构设计上下功夫。 (五)、排油管路和机械系统的振动 避免措施:(1)用软管连接泵与阀、管路。 (2)配置排油管时防止共振与驻波现象发生。 (3)配管的支撑应设在坚固定台架上;
(六)、流体噪声(压力脉动)控制措施: (1) 安装减震软管
(2) 在管路中设置蓄能器。
(3) 在管路上安装消声器或串联滤声器 。因体积大、费用高而应用较少。
二、液压冲击
(一)液流换向时产生的冲击
排除方法:改进换向阀阀芯进回油控制边的结构。 (二)节流缓冲装置失灵引起的液压冲击 (1) 液压缸端部缓冲。 (2) 节流缓冲装置
排除方法:将换向阀上的节流阀调节手轮顺时针旋进,适当增加缓冲阻尼,如不起作用检查单向阀是否内泄。 (3) 电磁换向阀动作快,容易产生换向液压冲击。 (4) 立式液压缸两端没有缓冲装置。在液压系统中设置背压阀或在设备上设置平衡锤。 (5) 在液压缸两端均设有缓冲装置,使液压缸运动到末端时能平滑停止,但当活塞中途停止或反向运动时产生冲击。
排除方法:在液压缸进出油口处设置反应快、灵敏度高的小型溢流阀或顺序阀,以消除冲击。此溢流阀压力的调定值应比系统压力高5-10%,以保证系统工作。 (6) 安装蓄能器来消除液压冲击,蓄能器应尽可能近的安装在发生冲击的地方。 (7) 尽可能的缩短管路长度,减少管路弯曲,在适当地部位接入软管,对减小冲击和振动也有良好的效果。 (8) 压力阀调整不当,或发生故障:油温过高,泄漏增加,节流和阻尼减弱:系统中混入大量空气等,都易发生冲击。 三、 气穴和气蚀
前面已提及气穴和气蚀。
1、定义:油液在液压系统中流动,流速高的区域压力低。当压力低于工作温度下的空气分离压时,溶于油液中的空气就将大量分离出来,形成气泡:另一种情况,如果液体内部压力低于工作温度下油液的饱和蒸汽压时,油液迅速汽化,加速形成气泡。这些气泡混杂在液体中产生气穴,使原来充满在管道中或元件中的油液成为不连续状态,这种现象称为气穴现象。
当气泡随着油液流入高压区时,便突然收缩,而原来所占据的空间形成真空。四周液体质点以极大的速度冲向真空区域,在高压下气泡破裂,产生局部压力冲击,将质点的动能突然转换成动能,局部高压区域温度可高达1000度,管壁或元件表面上,因长期承受液压冲击和高压作用,逐渐腐蚀,表面剥落行成小坑,呈蜂窝状,这种现象称为气蚀。
2、判断和排除方法
(1) 气穴和气蚀的检测与判断。
A在液压泵进出口处设置一个压力表。 B听液压泵运转声音是否有啸叫声
C看现象:执行元件动作减慢、系统运行变迟钝。
(2)使系统油压高于空气分离压。当油温较高、空气溶解量大时,空气分离压也高。当矿物油含气量10%、油温50度时,空气分离压约为40kpa。
(3)防止小孔或锥阀等节流部位产生气穴,节流口前后压力之比应小于35。 (4) 液压泵的吸油管内径要足够大,并避免狭窄通道或急剧拐弯。 (5) 尽可能减少油液中空气的含量,避免压力油与空气直接接触而增加空气溶解量 四、 爬行 (一) 驱动刚性差引起的“爬行”。空气进入油液中后,一部分溶于压力油中,其余部分就形成气泡浮游于压力油中。因为空气有压缩性,使液压油产生明显的弹性。 (1) 液压系统中有空气存在,使传动系统产生种种故障: A使运动部件产生爬行,破坏液压系统的工作平稳性。 B使工作机构产生振动和噪声
C由于振动,管接头容易松动,甚至油管断裂,造成泄漏。
D油箱中出现大量气泡,使油液容易氧化变质,缩短油液的使用寿命。 E影响运动部件的换向精度。
F由于空气存在于油液中,使工作压力不稳定。 (2) 空气混入液压系统中的原因; a油管连接接头密封不严
b油箱中吸油管与回油管距离太近,回油飞溅搅起泡沫,使液压泵吸油管吸入空气。
C油箱中油液不足或吸油管插入深度不够,造成液压泵吸入时混入空气。
D液压缸两端密封不良,造成泄漏。
E回油路上没有背压阀,使管中进入空气。
F液压泵吸油管处滤网被堵,在吸油管局部形成真空。
G液压系统局部压力低于空气的分离压,使溶于油液中的空气分离出
欢迎分享,转载请注明来源:品搜搜测评网