数控车床是一种高精度、高效率的自动化机床,配备多工位刀塔或动力刀塔,机床就具有广泛的工艺性能,直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂工件,具有直线插补、圆弧插补各种补偿功能,并在制造复杂零件发挥了良好的经济效果。数控车床工艺与普通车床的工艺类似,但数控车床是一次装夹连续自动完成所有车削工序,下面亿简单介绍下数控车床的注意事项:
一、合理选择切削用量:
在数控车床工艺中,—次定位将决定工件的最后的精度,而过程的自动化很难照顾到何处余量不足的问题。因此不管是板料、锻件、铸件还是型材,只要准备采用数控车削应选择合理的切削用量。
二、合理选择刀具:
(1)粗车时,要选强度高、耐用度好的刀具,以便满足粗车时大背吃刀量、大进给量的要求。
(2)精车时,要选精度高、耐用度好的刀具,以保证加工精度的要求。
(3)为减少换刀时间和方便对刀,应尽量采用机夹刀和机夹刀片。
三、合理选择夹具:
(1)尽量选用通用夹具装夹工件,避免采用专用夹具;
(2)零件定位基准重合,以减少定位误差。
四、确定路线:路线是指数控机床刀具相对零件的运动轨迹和方向。
(1)应能保证精度和表面粗糙要求;
(2)应尽量缩短路线,减少刀具空行程时间。
五、路线与余量的联系:
目前在数控车床还未达到普及使用的条件下,一般应把毛坯上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上。如必须用数控车床时则需注意程序的灵活安排。
六、夹具安装要点:目前液压卡盘和液压夹紧油缸的连接是靠拉杆实现的,首先用搬手卸下液压油缸上的螺帽,卸下拉管并从主轴后端抽出,再用搬手卸下卡盘固定螺钉即可卸下卡盘。
七、切削油的选用:
(1)工具钢刀具的耐热性能差,高温下失去硬度,因此要求采用冷却性能好、粘度低流动性好的切削油。
(2)高速钢刀具进行高速粗切削时,切削量大并产生大量的切削热,应采用冷却性好的切削油。如果用高速钢刀具进行中、低速的精加工时,一般采取低粘度切削油能减小刀具和工件的摩擦黏结,抑制切削瘤生成,提高精度。
(3)硬质合金刀具熔点和硬度较高,化学和热稳定性较好,切削和耐磨性能比高速钢刀具好得多,可使用活性硫切削油。如果是重切削,切削温度很高,容易极快磨损刀具,此时应选用非活性硫化切削油并增大切削油的流量,保证充足的冷却润滑。
(4)陶瓷刀具、金刚石刀具和立方氮化硼刀具都具有较高的硬度和耐磨性,切削时一般使用低粘度的非活性硫化切削油,以保证工件的表面光洁度。
以上就是使用数控车床时需要注意的事项,采用良好工艺可以有效提高工件质量。
简单说一下:
一般情况下普通小型油缸的基本结构组成为缸体、缸盖、活塞、活塞杆、密封件(外购)。
缸体的形状尺寸根据设计的需要而各不相同;缸盖也同样考虑到联接、安装方式结构不一。
活塞和活塞杆根据设计的需要可能设计为分体或一体式,密封件一般为“O”型圈或其他橡胶件等。
油缸缸体截面外型一般为矩形或圆形,材料有成型材料(铝合金,铸铁,铸钢等)或棒料加工。加工设备因考虑到实际需求和现有实际设备相结合,一般不外乎铣床、车床这些通用设备,有条件购置好的数控加工机床那更好。最重要的是内孔的加工,粗加工后的精加工很重要,尺寸,圆度,直线性的要求。配备一台好的珩磨机床是很有必要的。如油缸轴向尺寸较短,一般内圆磨也可以达到加工需求。
缸盖同缸体。需要保证活塞杆孔和止口的同轴度。一般车床,磨床。
活塞和活塞杆轴类零件,一般生产设备都可以胜任,注意一下热处理环节。
另外还要考虑到产品量的大小,是否需要购置或改造专机以提高工作效率。
小批量生产使用普通设备足以完成生产任务。
希望对搂主有帮助。
数控板料折弯机油缸丝杆是数控板料折弯机的重要组成部分,主要作用是将机械能转化成线性运动能,从而使板料在折弯过程中达到所需的弯曲角度和形状。通过控制油缸丝杆的伸缩来控制机械臂的移动,从而控制板料折弯的程度和角度。油缸丝杆作为折弯机械操作的关键部位,要求具有高精度、高刚性、优良的机械性能和寿命长等特点。同时,也需要加强平时的保养和维护,以确保机器的正常运行和稳定性。
液压油缸是工程机械液压系统中重要的执行元件,用于执行往复运动,驱动工程机械完成各种功能。活塞杆是液压油缸中连接活塞和工作部件的技术要求较高的关键传力零件,工作过程中需承受较大拉应力,因此,活塞杆必须具有足够的强度、刚度、韧性,同时因使用中受磨粒冲刷,极易产生磨损,还须具有较高的耐磨性。
长缸活塞杆采用45钢制造,其加工工艺路线为:锻材(轧材)—下料—调质—校直—机械加工—表面淬火、回火—校直—杆头焊接—机加工—磨削—去应力退火-抛光—镀硬铬—抛光—清洗—装配。活塞杆热处理是保证活塞杆内在质量与力学性能的关键工序,热处理质量的好坏直接关系到整个液压系统的寿命和可靠性,如果热处理不当,造成活塞杆使用过程中早期断裂,轻则损毁其零件,严重时可能造成整个设备的毁坏与人员伤亡。
数控是指在数控机床上进行零件制造的一种工艺方法,数控机床与传统机床的工艺规程从总体上说是一致的,区别是数控工艺用数字信息控制零件和刀具位移。要充分发挥数控机床的这一特点,必须在编程之前对工件进行工艺分析,根据具体条件选择经济、合理的工艺方案。下面简单介绍一下数控切削工艺的设计流程:
一、数控切削工艺工序划分
1、首先要熟读图样
分折零件图可知手柄轮廓是由一个圆锥台、一个柱面和三个圆弧连接曲面组成。确定工件坐标原点并汁算出每个折点的坐标以及曲线连接点的坐标。
2、按选择的刀具划分工序
以外圆右偏刀为主刀具,应尽可能完成所有部位,然后换切断刀车锥面和切断,并考虑切断刀的宽度。这样可以减少换刀次数压缩行程时间。
3、按粗、精工划分工序
若采用整个轮廓循环编程虽然简单,但前几个循环中的空程太多,不利于发挥数控切削的高效率。粗工切除大部分余量后,再将其表面精车一遍,以保证精度和表面粗糙度的要求。
4、合理选择切削用量
一般是在保证质量和刀具寿命的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高、投入最低。粗工时多选用低的切削速度,较大的背吃刀量和进给量;精工时选用高的切削速度,较小的进给量。
二、数据编程注意事项
(1)依据工艺考虑进行编程,编程就是给出工步中的每一次走刀命令。首先确定工件的坐标原点,并计算出每个折折点的坐标以及曲线连接点的坐标。正确给出每一工步的起刀点,即某个部位时刀具的初始位置,起刀点的正确与否直接影响编程和表面轮廓的形成。
(2)按粗、精工和所选刀具划分工序编程,粗工去除大部分余量;精工提高表面质量,考虑切断刀的实际刀尖,编程时应考虑刀宽的影响。
(3)在编程中不能直接使刀具直达工件表面,刀具与工件表面在零接触下也不允许移动,这样可有效避免刀具与工件接触可能产生的碰撞,避免造成刀具划伤工件表面或刀具磨损。
(4)准确对刀,数控编程是以刀尖点为参考沿零件轮廓的运动轨迹。首先通过正确对刀,使刀尖坐标与工件原点坐标重合。只有这样才能保证刀具按编程运行后获得正确的零件轮廓。
(5)输入编程模拟仿真,仿真看到的是模拟刀尖按编程刻划出的轮廓轨迹。而在切削过程中切削刃对工件是否造成干涉,在仿真中很难反应出来。仿真轨迹正确,最后加工出的工件轮廓不一定就完整,也就是说仿真可检验编程是否正确,而不能把过程中的过切干涉现象全部反映出来。
三、切削刀具的选择
(1)目前常用的切削材料有高速钢和硬质合金。由于高速钢只能在较低温度下保持其切削性能,因此不宜用于高速切削。硬质合金比高速钢具有更好的耐热性和耐磨性,因此硬质合金材料刀具更适合切削。
(2)在对高粘性、高塑性的零件时,要求刀具具有较高的耐磨性、耐热性,并能在较高的温度下保持优良的切削、断屑性能,在保证刀具有足够强度的前提下,应选用较大的前角,减小被切削金属的塑性变形,降低切削力和切削温度,同时使硬化层深度减小。
(3)在刀具涂层的选择方面,宜选择硬度高、抗粘结性和韧性好的涂层材料。超细的涂层工艺提高刀片的耐磨性,涂层表面光滑,减少摩擦,减少积屑瘤的产生,适用于良好工况下不锈钢高速半精、精车削场合。
四、切削油的选择
由于高速切削工艺的加工性较差,对切削油的冷却、润滑、渗透及清洗性能有更高的要求,常用的切削油切削过程中能在金属表面形成高熔点硫化物,而且在高温下不易破坏,具有良好的润滑作用,并有一定的冷却效果,一般用于高难度不锈钢切削、钻孔、铰孔及攻丝等工艺。
欢迎分享,转载请注明来源:品搜搜测评网