成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响

成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响,第1张

界面前沿温度梯度为负时,固溶体结晶时晶体易长成树枝状;温度剃度为正时,溶质在固液界面前沿液相富集,而液体的平衡结晶温度随着溶质浓度的增大而降低,并且晶体长大速度与过冷度也有关,因此,溶质富集的沟槽的平衡结晶温度较低,过冷度较小,其长大速度不如顶部快,因此使沟槽不断加深,在一定条件下,界面最终达到一定形状,此后的晶体生长以凹凸不平的胞状界面恒速向液体中推进。

在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。这种过冷完全是由于界面前沿液相中的成分差别所引起的。温度梯度增大,成分过冷减小。

找全国铸件订单、球墨铸铁件、采购铸件、铸造厂接单、咨询铸造技术问题,就来

铸件订单网

成分过冷:凝固时由于溶质再分配造成固液界面前沿溶质浓度变化,引起理论凝固温度的改变而在液固界面前液相内形成的过冷。这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷。由界面前方的实际温度和液相线温度分布两者共同决定。

成分过冷不仅受热扩散的控制,更受溶质扩散的控制

固液界面稳定。速凝固后,固液界面反而能够稳定,产生无偏析的柱状晶组织,得到成分均匀的材料,成分过冷理论就不适用了。成分过冷:凝固时由于溶质再分配造成固液界面前沿溶质浓度变化,引起理论凝固温度的改变而在液固界面前液相内形成的过冷。

成分过冷临界温度梯度算法是CL=C0/k0C%。液相中温度梯度GL越小,成份过冷越大。生长速度R越大,成份过冷越大。液相线斜率mL越大,成份过冷越大。合金原始成分C0越大,成份过冷越大。扩散系数DL越小。

1液态凝固时必须要有一定的过冷度,过冷度越大凝固点的驱动力也越大

2并不是只要低于理论凝固温度的任何温度液态转变为固态的过程就能发生,液相形成固相的晶核,必须达到一临界过冷度。

枝晶尖端的过冷度由热过冷、曲率过冷、成分过冷和动力学过冷四部分组成。根据查询相关公开信息显示:一般认为焊接熔池中过冷度由四部分组成分别是热过冷、曲率过冷、成分过冷和动力学过冷,对于柱状晶的生长枝晶尖端前沿溶质富集并且浓度梯度较大因此成分过冷。

冷却度对晶体长大方式和速度的影响如下:

1冷却速度越快,材料的过冷度也会相应的增加,材料的结晶形核过程会有相应的时间滞后性,就会造成过冷度增加。

2随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行;

3当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。

4过冷度增大,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。

液态金属结晶的基本过程

1液态金属结晶的驱动力:两相自由能的差值ΔGV为结晶的驱动力。,对于给定金属,L与T0均为定值,△GV仅与△T有关。因此,液态金属结晶的驱动力是由过冷度提供的。过冷度越大,结晶的驱动力也就越大,过冷度为零时,驱动力就不复存在。所以液态金属在没有过冷度的情况下不会结晶。

2 液态金属结晶过程:首先,系统通过起伏作用在某些微观小区域内克服能量障碍而形成稳定的新相晶核;新相一旦形成,系统内将出现自由能较高的新旧两相之间的过渡区。为使系统自由能尽可能地降低,过渡区必须减薄到最小原子尺度,这样就形成了新旧两相的界面;然后,依靠界面逐渐向液相内推移而使晶核长大。直到所有的液态金属都全部转变成金属晶体,整个结晶过程也就在出现最少量的中间过渡结构中完成。由此可见,为了克服能量障碍以避免系统自由能过度增大,液态金属的结晶过程是通过形核和生长的方式进行的。

在存在相变驱动力的前提下,液态金属的结晶过程需要通过起伏(热激活)作用来克服两种性质不同的能量障碍(简称能障),两者皆与界面状态密切相关。一种是热力学能障,它由被迫处于高自由能过渡状态下的界面原子所产生,能直接影响到系统自由能的大小,界面自由能即属于这种情况;另一种是动力学能障,它由金属原子穿越界面过程所引起,原则上与驱动力的大小无关而仅取决于界面的结构与性质,激活自由能即属于这种情况。前者对形核过程影响颇大,后者在晶体生长过程中则具有更重要的作用。而整个液态金属的结晶过程就是金属原子在相变驱动力的驱使下,不断借助于起伏作用来克服能量障碍,并通过形核和生长方式而实现转变的过程。

3形核:亚稳定的液态金属通过起伏作用在某些微观小区域内形成稳定存在的晶态小质点的过程称为形核。

形核条件:首先,系统必须处于亚稳态以提供相变驱动力;其次,需要通过起伏作用克服能障才能形成稳定存在的晶核并确保其进一步生长。由于新相和界面相伴而生,因此界面自由能这一热力学能障就成为形核过程中的主要阻力。根据构成能障的界面情况的不同,可能出现两种不同的形核方式:均质生核和非均质生核。

均质生核:在没有任何外来界面的均匀熔体中的生核过程。

非均质生核:在不均匀熔体中依靠外来杂质或型壁界面提供的衬底进行生核的过程。

4 均质生核机制必须具备以下条件:

1) 过冷液体中存在相起伏,以提供固相晶核的晶胚。

2) 生核导致体积自由能降低,界面自由能提高。为此,晶胚需要体积达到一定尺寸才能稳定存在。

3) 过冷液体中存在能量起伏和温度起伏,以提供临界生核功。

4) 为维持生核功,需要一定的过冷度。

5临界晶核半径而言,非均质形核临界半径r非与均质形核临界半径 r均的表达式完全相同。非均质生核的临界形核功ΔG非与均质生核的临界形核功ΔG均之间也仅相差一个因子 f(θ)。0°<θ< 180°,0 < f(θ) < 1,故V冠 < V球,ΔG非< ΔG均,因而衬底都具有促进形核的作用,非均质生核比均质生核更容易进行。

6生核剂:一种好的生核剂首先应能保证结晶相在衬底物质上形成尽可能小的润湿角θ,其次生核剂还应该在液态金属中尽可能地保持稳定,并且具有最大的表面积和最佳的表面特性。

7晶体的生长主要受以下几个彼此相关的过程所制约:

①界面生长动力学过程;

②传热过程;

③传质过程。

8固-液界面的微观结构

从微观尺度考虑,固—液界面可划分为粗糙界面与平整界面,或非小平面界面及小平面界面。

粗糙界面(非小平面界面):界面固相一侧的几个原子层点阵位置只有50%左右为固相原子所占据。这几个原子层的粗糙区实际上就是液固之间的过渡区。

平整界面(小平面界面):界面固相一侧的点阵几乎全部被固相原子占据,只留下少数空位;或在充满固相原子的界面上存在少数不稳定的、孤立的固相原子,从而从整体上看是平整光滑的。

对于不同的α值,对应不同的界面微观结构,称为Jackson判据。

当α≤2 时,界面的平衡结构应有 50%左右的点阵位置为固相原子所占据,因此粗糙界面是稳定的。

当α>2 时,界面的平衡结构或是只有少数点阵位置被占据,或是绝大部分位置被占据后而仅留下少量空位。因此,这时平整界面是稳定的。α越大,界面越平整。

绝大多数金属的熔化熵均小于2,在其结晶过程中,固-液界面是粗糙界面。多数非金属和化合物的α值大于2,这类物质结晶时,其固-液界面为由基本完整的晶面所组成的平整界面。铋、铟、锗、硅等亚金属的情况则介于两者之间,这类物质结晶时,其固—液界面往往具有混合结构。

9界面的生长机理和生长速度

1、连续生长机制——粗糙界面的生长。较高的生长速度。

2、二维生核生长机制——完整平整界面的生长。生长速度也比连续生长低。

3、从缺陷处生长机制——非完整界面的生长。(1)螺旋位错生长;(2)旋转孪晶生长;反射孪晶生长。生长速度比二维形核生长快,仍比连续生长慢。

10溶质再分配和平衡分配系数

单相合金的结晶过程一般是在一个固液两相共存的温度区间内完成的。在区间内的任一点,共存两相都具有不同的成分。因此结晶过程必然要导致界面处固、液两相成分的分离。同时,由于界面处两相成分随着温度的降低而变化,故晶体生长与传质过程必然相伴而生。这样,从生核开始直到凝固结束,在整个结晶过程中,固、液两相内部将不断进行着溶质元素重新分布的过程。我们称此为合金结晶过程中溶质再分配。

衡固相中溶质浓度与平衡液相溶质浓度的比值称为平衡分配系数。

11平衡结晶中的溶质再分配规律:

12固相无扩散,液相均匀混合——Scheil公式

13固相无扩散,液相只有有限扩散:

初期过渡阶段:在结晶初期,生长的结果导致溶质原子在界面前沿进一步富集。溶质的富集降低了界面处的液相线温度,只有温度进一步降低时界面才能继续生长。这一时期的结晶特点为:随着固液界面向前推进,固、液两相平衡浓度CS与CL持续上升,界面温度不断下降。

稳定生长阶段:界面上排出的溶质量与扩散走的溶质量相等,晶体便进入稳定生长阶段。Cs=C0,界面前方。

后过渡阶段:到生长临近结束,富集的溶质集中在残余液相中无法向外扩散,于是界面前沿溶质富集又进一步加剧,界面处固、液两相的平衡浓度复又进一步上升,形成了晶体生长的最后过渡阶段。

14热过冷和成分过冷

仅由熔体实际温度分布所决定的过冷状态称为热过冷。由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷称为成分过冷。

成分过冷判据:

15固液界面前沿金属液过冷状态对结晶过程的影响

1、热过冷对结晶过程的影响

(1)界面前方无热过冷下的平面生长:界面能最低的宏观平坦的界面形态是稳定的。界面上偶然产生的任何突起必将伸入过热熔体中而被熔化,界面最终仍保持其平坦状态。这种界面生长方式称为平面生长。生长中,每个晶体逆着热流平行向内伸展成一个个柱状晶。

(2)热过冷作用下的枝晶生长:界面前方存在着一个大的热过冷区。宏观平坦的界面形态是不稳定的。一旦界面上偶然产生一个凸起,它必将与过冷度更大的熔体接触而很快地向前生长,形成一个伸向熔体的主杆。主杆侧面析出的结晶潜热使温度升高,远处仍为过冷熔体,也会使侧面面临新的热过冷,从而生长出二次分枝。同样,在二次分枝上还可能生长出三次分枝,从而形成树枝晶。这种界面生长方式称为枝晶生长。如果GL <0的情况产生于单向生长过程中,得到的将是柱状枝晶;如果GL <0发生在晶体的自由生长过程中,则将形成等轴枝晶。

2、成分过冷对结晶过程的影响

(1) 界面前方无成分过冷的平面生长:当一般单相合金晶体生长符合条件

时,界面前方不存在过冷。因此界面将以平面生长方式长大。

(2)窄成分过冷区作用下的胞状生长

当一般单相合金晶体生长符合条件

时,界面前方存在着一个狭窄的成分过冷区。在窄成分过冷区的作用下,不稳定的平坦界面就破裂成一种稳定的、由许多近似于旋转抛物面的凸出圆胞和网格状的凹陷沟槽构成的新的界面形态,称为胞状界面。以胞状界面向前推进的生长方式称为胞状生长,其生长结果形成胞状晶。每个胞状晶的横向成分很不均匀,k0 <1的合金,晶胞中心溶质含量最低,向四周逐渐增高。

(3) 宽成分过冷区作用下的枝晶生长

①柱状枝晶生长

随着界面前方的成分过冷区逐渐加宽,晶胞凸起伸向熔体更远,凸起前端逐渐变得不稳定,胞状生长就转变为柱状枝晶生长。如果成分过冷区足够大,二次枝晶在随后的生长中又会在其前端分裂出三次分枝。这样不断分枝的结果,在成分过冷区内迅速形成了树枝晶的骨架。单相合金柱状晶生长是一种热量通过固相散失的约束生长。在生长过程中主干彼此平行地向着热流相反的方向延伸,相邻主干的高次分枝往往互相连接,排列成方格网状,构成柱状枝晶特有的板状排列,从而使材料的各项性能表现出强烈的各项异性。

②等轴枝晶生长

当界面前方成分过冷区进一步加宽时,成分过冷的极大值ΔTcm将大于熔体中非均质生核最有效衬底大量生核所需的过冷ΔT非,于是在柱状晶生长的同时,界面前方这部分熔体也将发生新的生核过程,并且导致了晶体在过冷熔体(GL<0)的自由生长,从而形成了方向各异的等轴枝晶。

等轴枝晶的存在阻止了柱状晶区的单向延伸,此后的结晶过程便是等轴晶区不断向液体内部推进的过程。

由此可见,就合金的宏观结晶状态而言,平面生长,胞状生长和柱状枝晶生长皆属于一种晶体自型壁生核,由外向内单向延伸的生长方式,称为外生生长。等轴枝晶在熔体内部自由生长的方式称为内生生长。可见成分过冷区的进一步加大促使了外生生长向内生生长的转变。显然,这个转变是由成分过冷的大小和外来质点非均质生核的能力这两个因素所决定的。大的成分过冷和强生核能力的外来质点都有利于内生生长和等轴枝晶的形成。

16.共晶合金的共生生长

大多数共晶合金在一般情况下是按共生生长的方式进行结晶的。结晶时,后析出相依附于领先相表面析出,形成具有两相共同生长界面的双相核心;然后依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元而使两相彼此合作地一起向前生长,称为共生生长。

共生生长应该满足两个基本条件:其一是共晶两相应有相近的析出能力,并且后析出相易于在领先相的表面形核,从而形成具有共生界面的双相核心;其二是界面前沿溶质原子的横向扩散应能保证共晶两相的等速生长,使共生生长得以进行。

17.共晶合金的离异生长和离异共晶

共晶两相没有共同的生长界面,它们各以不同的速度独立生长,两相的析出在时间上和空间上都是彼此分离的,因而在形成的组织上没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称为离异共晶。

在下述情况下,共晶合金将以离异生长的方式进行结晶,并形成几种形态不同的离异共晶组织。

① 因以下两种原因造成一相大量析出,另一相尚未开始结晶时,将形成晶间偏析型离异共晶组织。

a)由系统本身的原因所造成:当合金成分偏离共晶点很远,初晶相长得很大,共晶成分的残留液体很少,类似于薄膜分布于枝晶之间。当共晶转变时,一相就在初晶相的枝晶上继续长出,而把另一相单独留在枝晶间。

b)由另一相的形核困难所引起:合金偏离共晶成分,初晶相长得较大。如果另一相不能以初生相为衬底形核,或因液体过冷倾向大而使该相析出受阻时,初生相就继续长大而把另一相留在枝晶间。

合金成分偏离共晶成分越远、共晶反应所需的过冷度越大,则越容易形成上述的离异共晶。

② 当领先相为另一相的“晕圈”所封闭时将形成领先相呈球团状结构的离异共晶组织。在共晶结晶过程中,有时第二相环绕领先相生长而形成一种镶边外围层,此外围层称为“晕圈”。一般认为,晕圈的形成是因两相在形核能力和生长速度上的差别所致。

在两相性质差别较大的非小面—小面共晶合金中更容易出现这种晕圈组织

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1926596.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-28
下一篇2023-10-28

随机推荐

  • 妮维雅防晒霜好用吗?

    现在是冬天,可是每天还是会遇到温暖的阳光,在外的时候,出门之前一定要记得涂抹防晒霜哦,不使用防晒霜,阳光照射在脸上,会伤害到自己的肌肤的。商场里面防晒霜的品种是非常多的,那么妮维雅防晒霜好用吗?妮维雅防晒霜怎么样?下面一起来看看。1、效果如

    2024-04-15
    57400
  • 创意生日礼物网(创意生日礼物定制)

    今天小编辑给各位分享创意生日礼物网的知识,其中也会对创意生日礼物定制分析解答,如果能解决你想了解的问题,关注本站哦。有创意的生日礼物"最好的礼物并不一定要贵,而是贴心,至于怎么个贴心法,这个就要具体问题具体分析了。1个性惊喜型。可

    2024-04-15
    56300
  • 经典哲理句子

      经历过看清身边伪朋友,假爱情,什么患难见真情!明白自己该要什么?看懂了那些是真真假假的"朋友"所以让这些虚伪的人该滚就滚,睁大眼睛。以下是我帮大家整理的哲理句子88句,欢迎阅读,希望能够对大家有所帮助。 1、人生是个

    2024-04-15
    58700
  • 妮维雅柔滑润肤乳真假?

    不是正规厂家进口过来的,没有中文标贴,按照国家化妆品包装的要求必须有中文标签的。你这个是泰国产的,很奇葩的是妮维雅的产品打印MFG和批号的,但是你这个确添加了有效期EXP,更奇葩的是你这个颜色怎么是这样的?这个应该是盈润丝柔保湿乳,这怎么会

    2024-04-15
    56800
  • hydra beauty香奈儿,香奈儿精华水使用方法

    随着年龄的增加,肤质会变得暗哑粗糙,这是变老的特点之一,这个时候我们就需要通过护肤来延缓衰老,比如hydra beauty香奈儿是个不错的选择,还有香奈儿精华水搭配一下就更好了,那么hydra beauty香奈儿怎么样,以及香奈儿精

    2024-04-15
    41300
  • 乳液和精华液哪个明星

    十大明星同款护肤品排名1、海蓝之谜面霜,2、SK-Ⅱ嫩肤清莹露,3、兰蔻小黑瓶精华肌底液,4、迪奥的梦幻美肌修颜乳,5、资生堂盼丽风姿丰润护唇膏,6、娇兰御廷兰花乳液,7、LaPrairie莱珀妮焕颜新生乳霜,8、CPB沁肌紧肤蜜,9、PO

    2024-04-15
    42100
  • 大漂亮三周年卖的40块钱的福利套盒是什么

    是一款限时特惠的美容礼盒。根据查询大漂亮官方的介绍得知,这个福利套盒包括两个主要产品:一个是10毫升的小样玫瑰精华液,另一个是一片玫瑰面膜。这两个产品都是大漂亮品牌的明星产品,其中玫瑰精华液富含多种植物精华和玫瑰精油,能够深层滋养肌肤,提升

    2024-04-15
    55700

发表评论

登录后才能评论
保存