锌系磷化、铁系磷化、锰系磷化是按磷化液成分不同分类的。
根据磷化液成分不同,磷化可分为:锌系磷化、锌钙系磷化、铁系磷化、锰系磷化、复合磷化(磷化液由锌、铁、钙、镍、锰等元素组成)。
不同磷化液造成的磷化表面性质有所差异,用途有所不同。
钢铁磷化主要用于耐蚀防护和油漆用底膜。
(1)耐蚀防护用磷化膜
①防护用磷化膜 用于钢铁件耐蚀防护处理。磷化膜类型可用锌系、锰系。膜单位面积质量为10-40 g/m2。磷化后涂防锈油、防锈脂、防锈蜡等。
②油漆底层用磷化膜
增加漆膜与钢铁工件附着力及防护性。磷化膜类型可用锌系或锌钙系。磷化膜单位面积质量为02-10 g/m2(用于较大形变钢铁件油漆底层);1-5 g/m2(用于一般钢铁件油漆底层);5-10 g/m2(用于不发生形变钢铁件油漆底层)。
(2)冷加工润滑用磷化膜
钢丝、焊接钢管拉拔 单位面积上膜重1-10 g/m2;精密钢管拉拔 单位面积上膜重4-10 g/m2;钢铁件冷挤压成型 单位面积上膜重大于10 g/m2。
(3)减摩用磷化膜
磷化膜可起减摩作用。一般用锰系磷化,也可用锌系磷化。对于有较小动配合间隙工件,磷化膜质量为1-3 g/m2;对有较大动配合间隙工件(减速箱齿轮),磷化膜质量为5-20 g/m2。
(4)电绝缘用磷化膜
一般用锌系磷化。用于电机及变电器中的硅片磷化处理。
磷化(phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。 磷化处理工艺应用于工业己有90多年的历史,大致可以分为三个时期:奠定磷化技术基础时期、磷化技术迅速发展时期和广泛应用时期。 一、磷化原理 1、磷化 工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成一层不溶于水的结晶型磷酸盐转换膜的过程,称之为磷化。 2、磷化原理 钢铁件浸入磷化液(由Fe(H2PO4)2、 Mn(H2PO4)2、 Zn(H2PO4)2 组成的酸性稀水溶液,PH值为1-3,溶液相对密度为105-110)中,磷化膜的生成反应如下: 吸热 3Zn(H2PO4)2 =Zn3(PO4)2↓+4H3PO4 或 吸热 吸热 3Mn(H2PO4)2 =Mn3(PO4)2↓+4H3PO4 吸热 钢铁工件是钢铁合金,在磷酸作用下,Fe和FeC3形成无数原电池,在阳极区,铁开始熔解为Fe2+,同时放出电子。 Fe+2H3PO4= Fe (H2PO4)2+H2↑ Fe =Fe2+ +2e- 在钢铁工件表面附近的溶液中Fe2+不断增加,当Fe2+与HPO42-,PO43-浓度大于磷酸盐的溶度积时,产生沉淀,在工件表面形成磷化膜: Fe(H2PO4)2= FeHPO4↓+ H3PO4 Fe+ Fe(H2PO4)2 =2FeHPO4↓+ H2↑ 3FeHPO4= Fe 3(PO4)2↓+ H3PO4 Fe+ 2FeHPO4 =Fe 3(PO4)2↓+H2↑ 阴极区放出大量的氢: 2H+ +2e- =H2↑ O2 + 2H20 =4e- + 4OH- 总反应式: 吸热 3Zn(H2PO4)2= Zn3(PO4)2↓+4H3PO4 吸热 吸热 Fe+3Zn(H2PO4)2= Zn3(PO4)2↓+FeHPO4↓+3 H3PO4+2 H2↑ 放热 二、磷化分类 1、按磷化处理温度分类 (1)高温型 80—90℃处理时间为10-20分钟,形成磷化膜厚达10-30g/m2,溶液游离酸度与总酸度的比值为1:(7-8) 优点:膜抗蚀力强,结合力好。 缺点:加温时间长,溶液挥发量大,能耗大,磷化沉积多,游离酸度不稳定,结晶粗细不均匀,已较少应用。 (2)中温型 50-75℃,处理时间5-15分钟,磷化膜厚度为1-7 g/m2,溶液游离酸度与总酸度的比值为1:(10-15) 优点:游离酸度稳定,易掌握,磷化时间短,生产效率高,耐蚀性与高温磷化膜基本相同,目前应用较多。 (3)低温型 30-50℃ 节省能源,使用方便。 (4)常温型 10-40℃ 常(低)温磷化(除加氧化剂外,还加促进剂),时间10-40分钟,溶液游离酸度与总酸度比值为1:(20-30),膜厚为02-7 g/m2。 优点:不需加热,药品消耗少,溶液稳定。 缺点:处理时间长,溶液配制较繁。 2、按磷化液成分分类 (1)锌系磷化 (2)锌钙系磷化 (3)铁系磷化 (4)锰系磷化 (5)复合磷化 磷化液由锌、铁、钙、镍、锰等元素组成。 3、按磷化处理方法分类 (1)化学磷化 将工件浸入磷化液中,依靠化学反应来实现磷化,目前应用广泛。 (2)电化学磷化 在磷化液中,工件接正极,钢铁接负极进行磷化。 4、按磷化膜质量分类 (1)重量级(厚膜磷化) 膜重75 g/m2以上。 (2)次重量级(中膜磷化)膜重46-75 g/m2。 (3)轻量级(薄膜磷化)膜重11-45 g/m2。 (4)次轻量级(特薄膜磷化)膜重02-10 g/m2。 5、按施工方法分类 (1)浸渍磷化 适用于高、中、低温磷化 特点:设备简单,仅需加热槽和相应加热设备,最好用不锈钢或橡胶衬里的槽子,不锈钢加热管道应放在槽两侧。 (2)喷淋磷化 适用于中、低温磷化工艺,可处理大面积工件,如汽车、冰箱、洗衣机壳体。特点:处理时间短,成膜反应速度快,生产效率高,且这种方法获得的磷化膜结晶致密、均匀、膜薄、耐蚀性好。 (3)刷涂磷化 上述两种方法无法实施时,采用本法,在常温下操作,易涂刷,可除锈蚀,磷化后工件自然干燥,防锈性能好,但磷化效果不如前两种。 三、磷化作用及用途 1、磷化作用 (1)涂装前磷化的作用 ①增强涂装膜层(如涂料涂层)与工件间结合力。 ②提高涂装后工件表面涂层的耐蚀性。 ③提高装饰性。 (2)非涂装磷化的作用 ①提高工件的耐磨性。 ②令工件在机加工过程中具有润滑性。 ③提高工件的耐蚀性。 2、磷化用途 钢铁磷化主要用于耐蚀防护和油漆用底膜。 (1)耐蚀防护用磷化膜 ①防护用磷化膜 用于钢铁件耐蚀防护处理。磷化膜类型可用锌系、锰系。膜单位面积质量为10-40 g/m2。磷化后涂防锈油、防锈脂、防锈蜡等。 ②油漆底层用磷化膜 增加漆膜与钢铁工件附着力及防护性。磷化膜类型可用锌系或锌钙系。磷化膜单位面积质量为02-10 g/m2(用于较大形变钢铁件油漆底层);1-5 g/m2(用于一般钢铁件油漆底层);5-10 g/m2(用于不发生形变钢铁件油漆底层)。 (2)冷加工润滑用磷化膜 钢丝、焊接钢管拉拔 单位面积上膜重1-10 g/m2;精密钢管拉拔 单位面积上膜重4-10 g/m2;钢铁件冷挤压成型 单位面积上膜重大于10 g/m2。 (3)减摩用磷化膜 磷化膜可起减摩作用。一般用锰系磷化,也可用锌系磷化。对于有较小动配合间隙工件,磷化膜质量为1-3 g/m2;对有较大动配合间隙工件(减速箱齿轮),磷化膜质量为5-20 g/m2。 (4)电绝缘用磷化膜 一般用锌系磷化。用于电机及变电器中的硅片磷化处理。 四、磷化膜组成及性质 分类 磷化液主要成份 膜组成 膜外观 单位面积膜重/ g/m2 锌系 Zn(H2PO4)2 磷酸锌和磷酸锌铁 浅灰→深灰 1-60 锌钙系 Zn(H2PO4)2和 Ca (H2PO4)2 磷酸锌钙和磷酸锌铁 浅灰→深灰 1-15 锰系 Mn(H2PO4)2 和Fe(H2PO4)2 磷酸锰铁 灰→深灰 1-60 锰锌系 Mn(H2PO4)2 和Zn(H2PO4)2 磷酸锌、磷酸锰、磷酸铁混合物 灰→深灰 1-60 铁系 Fe(H2PO4)2 磷酸铁 深灰色 5-10 2磷化膜组成 磷化膜为闪烁有光,均匀细致,灰色多孔且附着力强的结晶,结晶大部分为磷酸锌,小部分为磷酸氢铁。锌铁比例取决于溶液成分、磷化时间和温度。 3、性质 (1)耐蚀性 在大气、矿物油、植物油、苯、甲苯中均有很好的耐蚀性,但在碱、酸、水蒸气中耐蚀性较差。在200-300℃时仍具有一定的耐蚀性,当温度达到450℃时膜层的耐蚀性显著下降。 (2)特殊性质 如增加附着力,润滑性,减摩耐磨作用。 五、磷化工艺流程 除油除锈→水洗→磷化→水洗→磷化后处理 六、影响因素 1、温度 温度愈高,磷化层愈厚,结晶愈粗大。 温度愈低,磷化层愈薄,结晶愈细。 但温度不宜过高,否则Fe2+ 易被氧化成Fe3+,加大沉淀物量,溶液不稳定。 2、游离酸度 游离酸度指游离的磷酸。其作用是促使铁的溶解,已形成较多的晶核,使膜结晶致密。 游离酸度过高,则与铁作用加快,会大量析出氢,令界面层磷酸盐不易饱和,导致晶核形成困难,膜层结构疏松,多孔,耐蚀性下降,令磷化时间延长。 游离酸度过低,磷化膜变薄,甚至无膜。 3、总酸度 总酸度指磷酸盐、硝酸盐和酸的总和。总酸度一般以控制在规定范围 上限为好,有利于加速磷化反应,使膜层晶粒细,磷化过程中,总酸度不断下降,反映缓慢。 总酸度过高,膜层变薄,可加水稀释。 总酸度过低,膜层疏松粗糙。 4、PH值 锰系磷化液一般控制在2-3之间,当PH﹥3时,共件表面易生成粉末。当PH�6�815时难以成膜。铁系一般控制在3-55之间。 5、溶液中离子浓度 ①溶液中Fe2+极易氧化成 Fe3+,导致不易成膜。但溶液中Fe2+浓度不能过高,否则,形成的膜晶粒粗大,膜表面有白色浮灰,耐蚀性及耐热性下降。 ②Zn2+的影响,当Zn2+浓度过高 ,磷化膜晶粒粗大,脆性增大,表面呈白色浮灰;当Zn2+浓度过低,膜层疏松变暗。 七、磷化后处理 目的:增加磷化膜的抗蚀性、防锈性。
铁系磷化剂
为淡蓝色酸性涂体,可在钢铁、锌、铝的表面形成厚08—17μm,呈黄红兰彩色膜层,与电泳涂装,粉末涂装具有优良的配套性,使漆膜抗弯曲、抗变形、防着力强。本产品单液使用,性能稳定,几乎无沉渣,槽液管理方便,消耗成本低,处理温度宽。
锌系磷化剂
可在室温下对钢铁、锌表面形成灰色均匀致密之磷酸盐膜,用作涂漆底层,可增强油漆附着力和防锈力。本产品工艺范围广,成膜迅速均匀。每公斤浓缩液可处理工件表面30—40m。
低温磷化液
适用于钢铁制品的表面处理。可在短时间内形成一层致密的磷化膜,磷化膜的防锈能力强,可明显提高基体与涂层的结合力。
最大的优点在于槽液稳定性极强,磷化时间短,处理温度低,不需任何加热设备,磷化膜细致均匀,操作工艺范围宽,沉渣极少,属于环保型磷化液。
镀锌板磷化液
适用于镀锌板制品的磷化处理,以及镀锌板制品与冷板制品的混线磷化处理,可在短时间内形成一层致密的磷化膜,磷化膜的防锈能力强,可显著提高基体与涂层的结合力。最大的优点在于采用我公司独创的单组分锌系磷化液,无需任何添加剂,处理温度低,磷化成膜时间短,工艺操控范围宽。
中温锌钙系磷化液
适用于冷热轧板制品的磷化处理,可在短时间内形成一层致密的磷化膜,磷化膜的防锈能力强,可显著提高基体与涂层的结合力。最大的优点在于采用我公司独创的中温锌钙系磷化液,磷化成膜时间短,工艺操控范围宽。
拉丝磷化液
适用于钢铁制品的表面处理。可在短时间内形成一层致密的磷化膜,磷化膜的防锈能力强,耐磨性好,适用于钢铁制品的变形加工。最大的优点在于采用单组磷化液,使用时无须添加剂,并且处理温度低,磷化成膜时间短,操制工艺范围宽,易于操作者控制。
A、B、C、D分别是:
解题过程如下:
扩展资料氧化法:
化膜钝化后呈金**,厚度约05~1μm,膜质软,疏松,耐蚀能力较差。
(1)新配制的溶液在80℃下使用时,可在10min内完成处理。溶液经长时间使用后,氧化能力减弱时,可以提高使用温度,否则需延长处理时间。
(2)氧化后的工件应立即用冷的流动水冲洗干净,再进行钝化处理,以使氧化物稳定并中和残留的碱液。
影响膜层质量的主要因素有:
(1)铬酐 在溶液中作为氧化剂,溶液若不含铬酐,腐蚀性加强,难于成膜,但含量过高又会使膜层质量变差,宜控制在20~25g/L。
(2)磷酸 是成膜的主要组分,含量低于50mL/L和高于80mL时,形成的膜层都较薄,耐腐蚀性能较低。
(3)氟化氢铵 是活化剂,促进膜的生成和致密。含量低于15g/L时,溶液不能成膜,含量达到3g/L时,溶液能生成耐蚀性最好的膜层。含量过高时,生成的膜层疏松。
(4)硼酸 用于控制溶液的氧化反应速度和改善膜层的致密性。
(5)温度 温度对膜层质量有重要的影响,在溶液组成正常的条件下,操作温度有决定作用,低于20℃时,形成的薄膜,耐腐蚀性能力差,而高于40℃时,形成的膜疏松。
(6)时间 氧化所需时间与溶液的氧化能力和操作温度有关。新配溶液氧化能力较强,且操作温度较高时,氧化所需时间较短,否则需适当延长氧化时间。
(7)封闭处理 磷化膜是多孔隙的,为提高其抗蚀能力,需进行封闭处理。
磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
磷化处理工艺应用于工业已有90多年的历史,大致可以分为三个时期:奠定磷化技术基础时期、磷化技术迅速发展时期和广泛应用时期。
扩展资料磷化过程包括化学与电化学反应。不同磷化体系、不同基材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:
8Fe+5Me(H2PO4)2+8H2O+H3PO4- Me2Fe(PO4)2·4H2O(膜)+Me3(PO4)·4H2O(膜)+7FeHPO4(沉渣)+8H2↑
Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。
参考资料:
1、磷化
工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成一层不溶于水的结晶型磷酸盐转换膜的过程,称之为磷化。
2、磷化原理
钢铁件浸入磷化液(由Fe(H2PO4)2、 Mn(H2PO4)2、 Zn(H2PO4)2 组成的酸性稀水溶液,PH值为1-3,溶液相对密度为105-110)中,磷化膜的生成反应如下:
吸热
3Zn(H2PO4)2 =Zn3(PO4)2↓+4H3PO4 或
吸热
吸热
3Mn(H2PO4)2 =Mn3(PO4)2↓+4H3PO4
吸热
钢铁工件是钢铁合金,在磷酸作用下,Fe和FeC3形成无数原电池,在阳极区,铁开始熔解为Fe2+,同时放出电子。
Fe+2H3PO4= Fe (H2PO4)2+H2↑
Fe =Fe2+ +2e-
在钢铁工件表面附近的溶液中Fe2+不断增加,当Fe2+与HPO42-,PO43-浓度大于磷酸盐的溶度积时,产生沉淀,在工件表面形成磷化膜:
Fe(H2PO4)2= FeHPO4↓+ H3PO4
Fe+ Fe(H2PO4)2 =2FeHPO4↓+ H2↑
3FeHPO4= Fe 3(PO4)2↓+ H3PO4
Fe+ 2FeHPO4 =Fe 3(PO4)2↓+H2↑
阴极区放出大量的氢:
2H+ +2e- =H2↑
O2 + 2H20 =4e- + 4OH-
总反应式:
吸热
3Zn(H2PO4)2= Zn3(PO4)2↓+4H3PO4
吸热
吸热
Fe+3Zn(H2PO4)2= Zn3(PO4)2↓+FeHPO4↓+3 H3PO4+ H2↑
放热 1、按磷化处理温度分类
(1)高温型
80—98℃处理时间为10-20分钟,形成磷化膜厚达10-30g/m2,溶液游离酸度与总酸度的比值为1:(7-8)
优点:膜抗蚀力强,结合力好。
缺点:加温时间长,溶液挥发量大,能耗大,磷化沉积多,游离酸度不稳定,结晶粗细不均匀,已较少应用。
(2)中温型
50-75℃,处理时间5-15分钟,磷化膜厚度为1-7 g/m2,溶液游离酸度与总酸度的比值为1:(10-15)
优点:游离酸度稳定,易掌握,磷化时间短,生产效率高,耐蚀性与高温磷化膜基本相同,应用较多。
(3)低温型
30-50℃ 节省能源,使用方便。
(4)常温型
10-40℃ 常(低)温磷化(除加氧化剂外,还加促进剂),时间10-40分钟,溶液游离酸度与总酸度比值为1:(20-30),膜厚为02-7 g/m2。
优点:不需加热,药品消耗少,溶液稳定。
缺点:处理时间长,溶液配制较繁。
2、按磷化液成分分类
(1)锌系磷化
(2)锌钙系磷化
(3)铁系磷化
(4)锰系磷化
(5)复合磷化 磷化液由锌、铁、钙、镍、锰等元素组成。
3、按磷化处理方法分类
(1)化学磷化
将工件浸入磷化液中,依靠化学反应来实现磷化,应用广泛。
(2)电化学磷化
在磷化液中,工件接正极,钢铁接负极进行磷化。
4、按磷化膜质量分类
(1)重量级(厚膜磷化) 膜重75 g/m2以上。
(2)次重量级(中膜磷化)膜重46-75 g/m2。
(3)轻量级(薄膜磷化)膜重11-45 g/m2。
(4)次轻量级(特薄膜磷化)膜重02-10 g/m2。
5、按施工方法分类
(1)浸渍磷化
适用于高、中、低温磷化 特点:设备简单,仅需加热槽和相应加热设备,最好用不锈钢或橡胶衬里的槽子,不锈钢加热管道应放在槽两侧。
(2)喷淋磷化
适用于中、低温磷化工艺,可处理大面积工件,如汽车、冰箱、洗衣机壳体。特点:处理时间短,成膜反应速度快,生产效率高,且这种方法获得的磷化膜结晶致密、均匀、膜薄、耐蚀性好。
(3)刷涂磷化
上述两种方法无法实施时,采用本法,在常温下操作,易涂刷,可除锈蚀,磷化后工件自然干燥,防锈性能好,但磷化效果不如前两种。 1、磷化作用
(1)涂装前磷化的作用
①增强涂装膜层(如涂料涂层)与工件间结合力。
②提高涂装后工件表面涂层的耐蚀性。
③提高装饰性。
(2)非涂装磷化的作用
①提高工件的耐磨性。
②令工件在机加工过程中具有润滑性。
③提高工件的耐蚀性。
2、磷化用途
钢铁磷化主要用于耐蚀防护和油漆用底膜。
(1)耐蚀防护用磷化膜
①防护用磷化膜 用于钢铁件耐蚀防护处理。磷化膜类型可用锌系、锰系。膜单位面积质量为10-40 g/m2。磷化后涂防锈油、防锈脂、防锈蜡等。
②油漆底层用磷化膜
增加漆膜与钢铁工件附着力及防护性。磷化膜类型可用锌系或锌钙系。磷化膜单位面积质量为02-10 g/m2(用于较大形变钢铁件油漆底层);1-5 g/m2(用于一般钢铁件油漆底层);5-10 g/m2(用于不发生形变钢铁件油漆底层)。
(2)冷加工润滑用磷化膜
钢丝、焊接钢管拉拔 单位面积上膜重1-10 g/m2;精密钢管拉拔 单位面积上膜重4-10 g/m2;钢铁件冷挤压成型 单位面积上膜重大于10 g/m2。
(3)减摩用磷化膜
磷化膜可起减摩作用。一般用锰系磷化,也可用锌系磷化。对于有较小动配合间隙工件,磷化膜质量为1-3 g/m2;对有较大动配合间隙工件(减速箱齿轮),磷化膜质量为5-20 g/m2。
(4)电绝缘用磷化膜
一般用锌系磷化。用于电机及变电器中的硅片磷化处理。 1、分类 磷化液主要成份 膜组成 膜外观 单位面积膜重/ g/m2
深灰色 5-10
2磷化膜组成
磷化膜为闪烁有光,均匀细致,灰色多孔且附着力强的结晶,结晶大部分为磷酸锌,小部分为磷酸氢铁。锌铁比例取决于溶液成分、磷化时间和温度。
3、性质
(1)耐蚀性
在大气、矿物油、植物油、苯、甲苯中均有很好的耐蚀性,但在碱、酸、水蒸气中耐蚀性较差。在200-300℃时仍具有一定的耐蚀性,当温度达到450℃时膜层的耐蚀性显著下降。
(2)特殊性质
如增加附着力,润滑性,减摩耐磨作用。 1、温度
温度愈高,磷化层愈厚,结晶愈粗大。
温度愈低,磷化层愈薄,结晶愈细。
但温度不宜过高,否则Fe2+ 易被氧化成Fe3+,加大沉淀物量,溶液不稳定。
2、游离酸度
游离酸度指游离的磷酸。其作用是促使铁的溶解,已形成较多的晶核,使膜结晶致密。
游离酸度过高,则与铁作用加快,会大量析出氢,令界面层磷酸盐不易饱和,导致晶核形成困难,膜层结构疏松,多孔,耐蚀性下降,令磷化时间延长。
游离酸度过低,磷化膜变薄,甚至无膜。
3、总酸度
总酸度指磷酸盐、硝酸盐和酸的总和。总酸度一般以控制在规定范围 上限为好,有利于加速磷化反应,使膜层晶粒细,磷化过程中,总酸度不断下降,反映缓慢。
总酸度过高,膜层变薄,可加水稀释。
总酸度过低,膜层疏松粗糙。
4、PH值
锰系磷化液一般控制在2-3之间,当PH﹥3时,工件表面易生成粉末。当PH‹15时难以成膜。铁系一般控制在3-55之间。
5、溶液中离子浓度
①溶液中Fe2+极易氧化成 Fe3+,导致不易成膜。但溶液中Fe2+浓度不能过高,否则,形成的膜晶粒粗大,膜表面有白色浮灰,耐蚀性及耐热性下降。
②Zn2+的影响,当Zn2+浓度过高 ,磷化膜晶粒粗大,脆性增大,表面呈白色浮灰;当Zn2+浓度过低,膜层疏松变暗。 目的:增加磷化膜的抗蚀性、防锈性。
方法:喷塑、喷粉、喷漆、电泳、上防锈油等。 1、磷化渣的影响
①磷化中生成的磷化渣,既浪费药品又加大清渣工作量,处理不好还影响磷化质量,视为不利。
②磷化中在生成磷化渣的同时还会挥发出磷酸,有助于维持磷化液的游离酸度,保持磷化液的平衡,视为有利。
2、磷化渣生成的控制
①降低磷化温度。
②降低磷化液的游离酸度。
③提高磷化速度,缩短磷化时间。
④提高NO-3 与PO3-4的比值。 ①外观检验
肉眼观察磷化膜应是均匀、连续、致密的晶体结构。表面不应有未磷化的残余空白或锈渍。由于前处理的方法及效果的不同,允许出现色泽不一的磷化膜,但不允许出现褐色。
②耐蚀性检查
⑴浸入法
将磷化后的样板浸入3﹪的氯化钠溶液中,经两小时后取出,表面无锈渍为合格。出现锈渍时间越长,说明磷化膜的耐蚀性越好。
②点滴法
室温下,将蓝点试剂滴在磷化膜上,观察其变色时间。磷化膜厚度不同,变色时间不同。厚膜﹥5分钟,中等膜﹥2分钟,薄膜﹥1分钟。 1、游离酸度的测定
用移液管吸取10 ml试液于250ml锥形瓶中,加50ml蒸馏水,加2—3滴甲基橙指示剂(或溴酚蓝指示剂)。用01mol/l氢氧化钠标准液滴定至溶液呈橙色(或用溴酚蓝指示剂滴定至由黄变蓝紫色)即为终点,记下的耗氢氧化钠标准液毫升数即为滴定的游离酸度点数。
2、总酸度的测定
用移液管吸取10 ml试液于250ml锥形瓶中,加50ml蒸馏水,加2—3滴酚酞指示剂。用01mol/l氢氧化钠标准液滴定至粉红色即为终点,记下的耗氢氧化钠标准液毫升数即为滴定的总酸度点数。 主要是铝件及锌件的磷化。
磷化液的主要成分是磷酸二氢盐,如Zn(H2PO4)2以及适量的游离磷酸和加速剂等。加速剂主要起降低磷化温度和加快磷化速度的作用。作为化学加速剂用得最多的氧化剂如NO3-、NO2-、CIO3-、H2O2等。磷化是金属与稀磷酸或酸性磷酸盐反应而形成磷酸盐保护膜的过程。磷化液按磷化成膜体系主要分为:锌系、锌钙系、锌锰系、锰系、铁系、非晶相铁系六大类。
锌系磷化槽液主体成分是:Zn2+、H2PO3-、NO3-、H3PO4、促进剂等。形成的磷化膜主体组成(钢铁件):Zn3(po4)2·4H2O 、Zn2Fe(PO4)2·4H2O。磷化晶粒呈树枝状、针状、孔隙较多。广泛应用于涂漆前打底、防腐蚀和冷加工减摩润滑。按磷化处理温度可分为常温、低温、中温、高温四类。常温磷化就是不加温磷化。低温磷化一般处理温度30~45℃。中温磷化一般60~70℃。高温磷化一般大于80℃。温度划分法本身并不严格,有时还有亚中温、亚高温之法,随各人的意愿而定,但一般还是遵循上述划分法。
锌系磷化液配方(仅供参考):
组份 投料量(g/L)
磷酸二氢锌 96~98
钼酸铵 7~8
硫酸镁 8~9
硝酸钙 25~26
氢氟酸 1~2
磷酸 9~10
硝酸 12~13
硝酸镍 65~7
亚硝酸钠 25~3
酒石酸 5~55
水 余量
磷化的主要过程:
1)金属的溶解过程 即金属与磷化液中的游离酸发生反应:
M+H3PO4 = M(H2PO4)2+H2↑
2)促进剂的加速过程为:
M(H2PO4)2+Fe+[O]→M3(PO4)2+FePO
由于氧化剂的氧化作用,加速了不溶性盐的逐步沉积,使金属基体与槽液隔离,会限制甚至停止酸蚀的进行。
3)磷酸及盐的水解: 磷化液的基本成分是一种或多种重金属的酸式磷酸盐, 其分子式为Me(H2PO4)2,这些酸式磷酸盐溶于水,在一定浓度及pH值下发生水解,产生游离磷酸:
Me(H2PO4)2=MeHPO4+H3PO4
3MeHPO4=Me3(PO4)2+ H3PO4
H3PO4=H2PO4-+H+= HPO42- + 2H+ = PO43- + 3H+
由于金属工件表面的氢离子浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。
4)磷化膜的形成:当金属表面离解出的PO3-4与磷化槽液中的金属离子Zn2+、Mn2+、Fe2+达到饱和时,即结晶沉积在金属工件表面,晶粒持续增长,直到在金属工件表面生成连续不溶于水的牢固的磷化膜:
3M+ 2PO4+ 4H2O = M3(PO4) 2·4H2O ↓
2M+ Fe+ 2 PO4+ 4H2O= M2Fe(PO4) 2·4H2O ↓
金属工件溶解出的Fe一部分作为磷化膜的组成部分被消耗掉,而残留在磷化槽液中的Fe则氧化成Fe,生成FePO4沉淀,即磷化沉渣的主要成分之一。
上述磷化原理可解释锌系磷化、锌钙系磷化、锰系磷化的成膜过程,也可解释锌件磷化、铝件磷化的成膜过程,但锌件磷化膜只有磷酸锌一种组成,铝件磷化还需加入较多的氟化物,以便形成AlF3、AlF6
常见组分及机理:
成膜剂:成膜剂是磷酸锌盐、磷酸钙盐、轻质碳酸锌盐、轻质碳酸钙盐中的一种或多种,锌:钙为1:(03~12),以锌系为主辅以钙系成膜剂,可改善膜层结晶组织,提高膜层附着力,使膜层致密、均匀、耐蚀力强。 2活化剂:活化剂是无机酸或盐,如磷酸钛盐、磷酸钠盐、磷酸和油酸盐等的一种或多种。有机酸如丙烯酸、酒石酸、柠檬酸、和葡萄糖酸等中一种或几种,活化剂是加速磷化速度,细化晶粒,形成致密低孔的膜。该磷化液中不含硝酸钠、亚硝酸钠和氟离子等使用更加安全。 钝化剂:钝化剂是钼酸盐、醋酸盐及磷酸盐中的至少一种。其作用是有效地封闭所成磷化膜中的微孔,使膜层均匀致密,提高抗蚀力。4添加剂:添加剂是不含强酸根的铁盐或亚铁盐中至少一种。其作用是为了保持适当的金属离子浓度,加速磷化,使膜层细致,以水作溶剂无毒、不燃、经济。
欢迎分享,转载请注明来源:品搜搜测评网