司太立合金是否为硬质合金?

司太立合金是否为硬质合金?,第1张

硬质合金使用的时候都是用铜焊焊接到刀杆上的,要是不能焊接怎么使用呢,除非是可转位刀片就不用焊接,硬质合金主要成分就是W Co Ti等Cr V Ta Nb是等主要是用着抑制WC晶粒长大和增加红硬性的,怎么能说不是硬质合金呢,只不过Cr V Ta Nb等元素的含量一般都比较低而已。建议你去买本关于硬质合金的书看看,你提的合格问题可是硬质合金常识啊。

钴基高温合金发展过程 20世纪30年代末期,由于活塞式航空发动机用涡轮增压器的需要,开始研制钴基高温合金。1942年﹐美国首先用牙科金属材料Vitallium (Co-27 Cr-5 Mo-05Ti)制作涡轮增压器叶片取得成功。在使用过程中这种合金不断析出碳化物相而变脆。因此﹐把合金的含碳量降至03%,同时添加26%的镍,以提高碳化物形成元素在基体中的溶解度,这样就发展成为HA-21合金。40年代末,X-40和HA-21制作航空喷气发动机和涡轮增压器铸造涡轮叶片和导向叶片,其工作温度可达850-870℃。

1953年出现的用作锻造涡轮叶片的S-816,是用多种难熔元素固溶强化的合金。从50年代后期到60年代末,美国曾广泛使用过4种铸造钴基合金:WI-52,X-45,Mar-M509和FSX-414。变形钴基合金多为板材,如L-605用于制作燃烧室和导管。1966年出现的HA-188,因其中含镧而改善了抗氧化性能。苏联用于制作导向叶片的钴基合金∏K4﹐相当于HA-21。钴基合金的发展应考虑钴的资源情况。钴是一种重要战略资源,世界上大多数国家缺钴,以致钴基合金的发展受到限制。

按使用用途分类,钴基合金可以分为钴基耐磨损合金,钴基耐高温合金及钴基耐磨损和水溶液腐蚀合金。一般使用工况下,其实都是兼有耐磨损耐高温或耐磨损耐腐蚀的情况,有的工况还可能要求同时耐高温耐磨损耐腐蚀,而越是在这种复杂的工况下,才越能体现钴基合金的优势。

钴基合金中的碳化物颗粒的大小和分布以及晶粒尺寸对铸造工艺很敏感,为使铸造钴基合金部件达到所要求的持久强度和热疲劳性能,必须控制铸造工艺参数。钴基合金需进行热处理,主要是控制碳化物的析出。对铸造钴基合金而言,首先进行高温固溶处理,温度通常为1150℃左右,使所有的一次碳化物,包括部分MC型碳化物溶入固溶体;然后再在870-980℃进行时效处理,使碳化物重新析出。

钴基合金

钴基高温合金是含钴量40~65%的奥氏体高温合金。在730~1100条件下具有一定的高温强度、良好的抗热腐蚀和抗氧化能力。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。

钴基高温合金是高温合金中的一种,它是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶而也还含有铁的一类合金。根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。

钴基高温合金的典型牌号有:Hayness188,Haynes25(L-605),Alloy S-816,UMCo-50,MP-159,FSX-414,X-40,Stellite6B等,中国相应牌号有:GH5188(GH188),GH159,GH605,K640,DZ40M等。我国对钴基高温合金研究比较深入(国内典型的研究与推广单位有钢铁研究总院与北京融品科技有限公司等)。与其它高温合金不同,钴基高温合金不是由与基体牢固结合的有序沉淀相来强化,而是由已被固溶强化的奥氏体fcc基体和基体中分布少量碳化物组成。铸造钴基高温合金却是在很大程度上依靠碳化物强化。纯钴晶体在417℃以下是密排六方(hcp)晶体结构,在更高温度下转变为fcc。为了避免钴基高温合金在使用时发生这种转变,实际上所有钴基高温合金由镍合金化,以便在室温到熔点温度范围内使组织稳定化。钴基高温合金具有平坦的断裂应力-温度关系,但在1000℃以上却显示出比其他高温下具有优异的抗热腐蚀性能,这可能是因为该合金含铬量较高,这是这类合金的一个特征。

20世纪30年代末期,由于活塞式航空发动机用涡轮增压器的需要,开始研制钴基高温合金。1942年﹐美国首先用牙科金属材料Vitallium (Co-27Cr-5Mo-05Ti)制作涡轮增压器叶片取得成功。在使用过程中这种合金不断析出碳化物相而变脆。因此﹐把合金的含碳量降至03%,同时添加26%的镍,以提高碳化物形成元素在基体中的溶解度,这样就发展成为HA-21合金。40年代末,X-40和HA-21制作航空喷气发动机和涡轮增压器铸造涡轮叶片和导向叶片,其工作温度可达850-870℃。1953年出现的用作锻造涡轮叶片的S-816,是用多种难熔元素固溶强化的合金。从50年代后期到60年代末,美国曾广泛使用过4种铸造钴基合金:WI-52,X-45,Mar-M509和FSX-414。变形钴基合金多为板材,如L-605用于制作燃烧室和导管。1966年出现的HA-188,因其中含镧而改善了抗氧化性能。苏联用于制作导向叶片的钴基合金∏K4﹐相当于HA-21。钴基合金的发展应考虑钴的资源情况。钴是一种重要战略资源,世界上大多数国家缺钴,以致钴基合金的发展受到限制。

一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。

钴基高温合金中最主要的碳化物是 MC﹑M23C6和M6C在铸造钴基合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴基高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。

在某些钴基高温合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。钴基合金较少使用金属间化合物进行强化,因为Co3 (Ti﹐Al)﹑Co3Ta等在高温下不够稳定,但使用金属间化合物进行强化的钴基合金也有所发展。

钴基高温合金中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基合金中的γ 相长大速度要慢﹐重新回溶于基体的温度也较高(最高可达1100℃)﹐因此在温度上升时﹐钴基合金的强度下降一般比较缓慢。

钴基合金有很好的抗热腐蚀性能,一般认为,钴基合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数钴基合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。但钴基高温合金抗氧化能力通常比镍基合金低得多。

早期的钴基合金用非真空冶炼和铸造工艺生产。后来研制成的合金,如Mar-M509合金,因含有较多的活性元素锆、硼等,用真空冶炼和真空铸造生产。

钴基高温合金中的碳化物颗粒的大小和分布以及晶粒尺寸对铸造工艺很敏感,为使铸造钴基合金部件达到所要求的持久强度和热疲劳性能,必须控制铸造工艺参数。钴基高温合金需进行热处理,主要是控制碳化物的析出。对铸造钴基高温合金而言,首先进行高温固溶处理,温度通常为1150℃左右,使所有的一次碳化物,包括部分MC型碳化物溶入固溶体;然后再在870-980℃进行时效处理,使碳化物(最常见的为M23C6)重新析出。

合金工件的磨损在很大程度上受其表面的接触应力或冲击应力的影响。在应力作用下表面磨损随位错流动和接触表面的互相作用特征而定。对于钴基高温合金来说,这种特征与基体具有较低的层错能及基体组织在应力作用或温度影响下由面心立方转变为六方密排晶体结构有关,具有六方密排晶体结构的金属材料,耐磨性是较优的。此外,合金的第二相如碳化物的含量、形态和分布对耐磨性也有影响。由于铬、钨和钼的合金碳化物分布于富钴的基体中以及部分铬、钨和钼原子固溶于基体,使合金得到强化,从而改善耐磨性。在铸造钴基合金中,碳化物颗粒尺寸与冷却速度有关,冷却快则碳化物颗粒比较细。砂型铸造时合金的硬度较低,碳化物颗粒也较粗大,这种状态下,合金的磨料磨损耐磨性明显优于石墨型铸造(碳化物颗粒较细),而粘着磨损耐磨性两者没有明显差异,说明粗大的碳化物有利于改善抗磨料磨损能力。

以上内容引用自:钴基高温合金 | 材料 尊重原文版权,注明出处。

一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。

碳化物强化相 钴基高温合金中最主要的碳化物是 MC,M23C6和M6C在铸造Stellite合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴基高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。

在某些Stellite合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。Stellite合金较少使用金属间化合物进行强化,因为Co3 (Ti﹐Al)﹑Co3Ta等在高温下不够稳定,但近年来使用金属间化合物进行强化的Stellite合金也有所发展。

Stellite合金中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基合金中的γ相长大速度要慢,重新回溶于基体的温度也较高(最高可达1100℃),因此在温度上升时﹐Stellite合金的强度下降一般比较缓慢。

Stellite合金有很好的抗热腐蚀性能, 一般认为,Stellite合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数Stellite合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。但Stellite合金抗氧化能力通常比镍基合金低得多。

阀门stl,是stellite的缩写。中文音译为“司太立”

司太立合金是著名的高温钴基合金,具有优良的高温性能,较好的热强性、热蚀性、韧性以及冷热疲劳性能。这类合金以钴、铬、钨为主要成分,故通称Co-Cr-W合金

Alloy 6B是一种钴基合金,用于磨损环境,防咬死,防磨损,防摩擦。6B的摩擦系数很低,能和其他金属产生滑触,在多数情况下不会产生磨损。即使不用润滑剂,或者不能用润滑剂的应用中,6B合金可以把咬死和磨损降至最低。

 

合金6B

CoCrW, UNS R30016, AMS5894

 

合金6B是一种钴基合金,用于磨损环境,防咬死,防磨损,防摩擦。合金6B的摩擦系数很低,能和其他金属产生滑触,在多数情况下不会产生磨损。即使不用润滑剂,或者不能用润滑剂的应用中,6B合金可以把咬死和磨损降至最低。

合金6B的耐磨性能是与生俱来的,不依靠冷作加工或热处理,因此也能减少热处理工作量和后续加工的成本

 

合金6B耐受气蚀, 耐冲击,耐热冲击和多种腐蚀介质 在赤热状态下,合金6B能保持很高的硬度(冷却后可以恢复原来的硬度) 在既有磨损又有腐蚀的环境中, 合金6B非常实用

 

应用

合金6B可用于制造阀门零件, 泵柱塞, 蒸汽机防腐蚀罩, 高温轴承, 阀杆,食品加工设备, 针阀,热挤模具, 成型磨具等

 

化学成分

铬 28-32%

钨 35-55%

钼 15%(最大值)

镍 3%(最大值)

锰 2%(最大值)

铁 3%(最大值)

碳 09-14%

钴 余量

 

机械性能

极限抗拉强度 145ksi

屈服强度     90ksi

延伸率       12%

硬度         Rockwell C36

 

抗拉强度-平均数据

 

 

应力开裂&蠕变-平均数据 

 

平均高温硬度

 

物理性能

密度: 0303lb/in3

比热(@72°F): 0101 BTU/lb-°F

导热率(32-212°F): 103BTU-in/ft2-hr-°F

电阻(68°F):546ohms/cirmilft

熔距:2310-2470°F

对比铜的导电率:190%

平均热膨胀系数:

32-212°F  77microinches/in°F

32-932°F  83 microinches/in°F

32-1472°F  91 microinches/in°F

32-1832°F  97 microinches/in°F

 

 

耐磨性能

 

磨损对比

磨损因数=材料磨损率/1020热轧钢磨损率

 

气蚀数据对比

 

静摩擦系数对比

系数表示休止角的正切。在表面光洁度优于120grit的干燥表面测得。表中结果为平均数,用于对比,不是绝对值。

 

加工性能

 

熔焊

6B可用钨极气体保护焊,金属极气体保护焊,焊条电弧焊和氧乙炔焊接(按优先顺序排列)。慎用氧乙炔焊接,因为焊接过程中材料会“沸腾”,产生很多孔隙。需用3X还原焰来减少氧化,渗透和中间合金。

为避免焊接过程产生开裂,合金6B需预热并在焊接中至少保持1000°F,然后进行空冷。不能使用迅速降温的夹具。

 

钎焊

使用钎焊可快速焊接合金6和其他材料。焊接零件表面的污物,例如油漆,油墨,化学品残留等,需要清除干净。可采用蚀刻,溶剂擦洗,除油清洗等方式。如果使用银钎焊填充金属和火焰钎焊,则需要使用助焊剂,帮着清洁焊接部位,使得填充金属在焊接面能自如流动。焊接前用钎焊溶剂擦拭焊接面。焊接时,一旦钎焊填充料熔化了,立即移开热源并连接两个焊接件。挤压焊接面,将多余的助焊剂挤出来,然后静置空冷。焊接零件不能进行淬火。

也可使用其他填充金属,例如金,钯,或镍基合金。根据工作条件选择合适的填充金属。

填充金属层越薄,焊接点强度则越高。填充金属层的厚度通常为0001-0005”。因此建议选择相互紧密配合的焊接面。

使用高温填充材料的钎焊通常在炉中进行。很少使用感应加热和电阻加热的盐浴或金属浴的沉浸钎焊。真空炉和可控气氛炉,能有效控制钎焊温度的湿度,可达到令人满意的结果。氢气和裂解氨气适合用作6B钎焊的保护气体。

 

机加

通常用硬质合金刀具加工6B,表面精度为200-300RMS。合金刀具需用5°(09rad)负前角和30°(052Rad)或45°(079rad)的导程角。6B合金不宜采用高速攻丝,应用EDM加工。为了提高表面光洁度,可用磨削,达到很高的精度。干磨加工后不能淬火,否则会影响外观。 作者:上海秉争特种合金公司 https://wwwbilibilicom/read/cv9026860/ 出处:bilibili

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1985572.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-01
下一篇2023-11-01

随机推荐

  • 精华露和精华液的区别

    精华露和精华液的区别在于质地不同、使用方法不同、适合人群不同。1、质地不同精华露是高浓缩后的护肤品,例如著名品牌SK神仙水就是这类型的产品,质地较为粘稠,更适合干性皮肤使用。但对于油性肌肤,因为油脂分泌旺盛的缘故,不太适合多种精华类的护肤品

    2024-04-15
    53500
  • 妮维雅洁面慕斯好用吗 零皂基的洗面奶

    妮维雅新推出的这个洁面慕斯一上市就受到了很多人的喜欢和追捧,连女星张钧甯都为他站台,这是一款0皂基,纯氨基酸配方的洗面奶,对皮肤无刺激,很温和。敏感肌和痘痘肌以及孕妈妈们都可以放心的使用哦。妮维雅洁面慕斯好用吗一、0皂基,氨基酸配方

    2024-04-15
    48800
  • 雅思兰黛小棕瓶精华液怎么使用

    雅斯兰黛小棕瓶精华也是精华露的一种,可以把它当作精华露使用。如何利用自身的手指呢?双手的按摩加上双手的温度让精华更好的吸收到皮肤中去,使用过后的皮肤摸起来软软的,一点都不油。同时雅斯兰黛小棕瓶精华具有良好的抗氧化性,使皮肤更好的吸收水分,因

    2024-04-15
    51600
  • 原液跟精华液有什么区别

    1、原液是单一成分、浓度更高、配方更精简,能够针对各种肌肤需要给肌肤更直接、快捷、更安全、更强效的保养,让肌肤在短时间内恢复最佳状态的美容产品。2、来源不同:原液的来源:原液虽然是一个新兴的护肤品类,但目前已经有丰富的品项。每一款原液,都添

    2024-04-15
    54400
  • hydra beauty香奈儿,香奈儿精华水使用方法

    随着年龄的增加,肤质会变得暗哑粗糙,这是变老的特点之一,这个时候我们就需要通过护肤来延缓衰老,比如hydra beauty香奈儿是个不错的选择,还有香奈儿精华水搭配一下就更好了,那么hydra beauty香奈儿怎么样,以及香奈儿精

    2024-04-15
    39200
  • 伊思水乳好用吗

    对于水乳的选择,我们需要告诉大家的就是,一定要选择出最适合自己一款产品,现在的晶钻蜗牛再生水乳还是不错的,它是属于清爽型的,比较适合的肤质就是混合偏油性的,还有就是油性的肌肤,一般在三十左右的人们当中,是特别的愿意来选择它的,而且我们也看到

    2024-04-15
    46000
  • 神仙水和清莹露区别

    SK-II的神仙水从一推出就深受全球护肤爱好者的青睐,因此很多的美妆博主都极力的推荐SK-II的神仙水。因此在国内大众消费者的印象中,都觉得SK-II的神仙水是一款非常不错的产品。SK-II的神仙水是一款精华液,与SKII清莹露相比较来说,

    2024-04-15
    37400

发表评论

登录后才能评论
保存