线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。
1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。
2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。
3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。它是内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、 线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。
4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。 线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。
线粒体的作用:
1、细胞有氧呼吸的主要场所
线粒体是一种存在于大多数细胞中的用两层膜包被的细胞器,是细胞有氧呼吸的主要场所,被称为“power house”,其直径在05到10微米左右。大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小数量以及外观等方面上都有所不同。
线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为05-10微米,长1-2微米在光学显微镜下,需用特殊的染色,才能加以辨别。不同生物的不同组织中线粒体数量的差异是巨大的,大多数哺乳动物的成熟红细胞不具有线粒体。
一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。线粒体分布方向与微管一致,通常分布在细胞功能旺盛的区域。线粒体的化学成分主要包括水,蛋白质和脂质(主要是磷脂),此外还有少量的辅酶等小分子及核酸,维生素,无机离子。
2、线粒体是含酶最多的细胞器
线粒体含有120多种酶是细胞中含酶最多的细胞器,由外至内可划分为线粒体外膜,线粒体膜间隙,线粒体内膜和线粒体基质四个功能区。
外膜较光滑,起细胞器界膜的作用,内膜则向内皱褶形成线粒体嵴,负担更多的生化反应。内膜富含心磷脂,通透性差。内膜具有嵴内膜上向内腔突起的折叠,能扩大表面积(5-10倍):分两种,1板层状,2管状:嵴上有基粒。
这两层膜将线粒体分出两个区室,位于两层线粒体膜之间的是线粒体膜间隙,被线粒体内膜包裹的是线粒体基质。内膜是线粒体进行电子传递和氧化磷酸化的主要部位。
呼吸包括氧化和磷酸化,ADP的磷酸化有2种方式:底物水平磷酸化,电子传递和氧化磷酸化。几种不同部位的标志酶:内膜–细胞色素氧化酶,外膜–单胺氧化酶,基质–苹果酸脱氢酶,膜间腔–腺苷酸激酶。
3、线粒体拥有调控细胞生长和细胞周期的能力
线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自助细胞器,除了为细胞供能外,线粒体还参与诸如细胞化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
线粒体的遗传体系除植物中的叶绿体外,真核细胞中唯一含有核外遗传。
4、线粒体是细胞氧化代谢的中心
线粒体是细胞氧化代谢的中心,是糖类,脂质和氨基酸最终氧化释能的场所。氧化作用葡萄糖和脂肪酸是真核细胞能量的主要来源。线粒体中的三羧酸循环,简称TCA循环,又称Krebs循环,柠檬酸循环,是物质氧化的最终共同途径。氧化磷酸化是生物体获得能量的主要途径。
细胞质基质中完成的糖酵解(glylolysis)葡萄糖经糖酵解生成丙酮酸的过程:生成2分子ATP和2分子NADH。
乙酰辅酶A形成(丙酮酸生成乙酰辅酶A)和在线粒体基质中完成的三羧酸循环在含产还原型烟酰胺腺嘌呤二核苷酸和还原型黄素腺嘌呤二核苷酸等高能分子,而氧化磷酸化这一步骤的作用则是利用这些物质还原氧气释放能量合成ATP。
5、线粒体可以储存钙离子
线粒体可以储存钙离子,可以和内质网,细胞外基质等结构协同作用。从而控制细胞中的钙离子浓度的动态平衡。
在钙离子释放时会引起伴随着较大膜电位变化的“钙波”,能激活某些第二信使系统蛋白质,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌,线粒体也参与细胞凋亡时的钙离子信号转导。
-线粒体
线粒体的化学组分主要包括水、蛋白质和脂质,此外还含有少量的辅酶等小分子及核酸。蛋白质占线粒体干重的65-70%。线粒体中的蛋白质既有可溶的也有不溶的。可溶的蛋白质主要是位于
线粒体基质
的酶和膜的外周蛋白;不溶的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶。线粒体中脂类主要分布在两层膜中,占干重的20-30%。在线粒体中的磷脂占总脂质的3/4以上。同种生物不同组织线粒体膜中磷脂的量相对稳定。含丰富的
心磷脂
和较少的胆固醇是线粒体在组成上与细胞其他
膜结构
的明显差别
叶绿体
内部有基质、富含脂质和
质体
醌的质体颗粒,以及结构精细的
内膜系统
(片层构造,内囊体)。在基质中水占叶绿体重量的60%—80%,这里有各种各样的离子、低分子
有机化合物
、酶、蛋白质、
核糖体
、RNA、DNA等。在
绿藻
、
褐藻
,
红藻
、接合藻、硅藻等许多藻类的叶绿体中存在着淀粉核
高尔基体膜
含有大约60%的蛋白和40%的脂类,具有一些和ER共同的蛋白成分。
膜脂
中
磷脂酰胆碱
的含量介于ER和
质膜
之间,中性脂类主要包括胆固醇,
胆固醇酯
和
甘油三酯
。高尔基体中的酶主要有糖基
转移酶
、
磺基
-
糖基转移酶
、
氧化还原酶
、
磷酸酶
、
蛋白激酶
、
甘露糖
苷酶、转移酶和磷脂酶等不同的类型。
核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein
particle),主要由RNA和蛋白质构成,其惟一功能是按照mRNA的指令将
氨基酸合成
蛋白质
多肽链
,所以核糖体是细胞内
蛋白质合成
的
分子机器
。
ER膜中磷脂约占50~60%,蛋白质约占20%,脂类主要成分为磷脂,磷脂酰胆碱含量较高,
鞘磷脂
含量较少,没有或很少含胆固醇。ER约有30多种膜
结合蛋白
,另有30多种位于
内质网
腔,这些蛋白的分布具有
异质性
,如:
葡糖
-6-磷酸酶,普遍存在于内质网,被认为是
标志酶
,核糖体结合糖蛋白(ribophorin)只分布在RER,P450酶系只分布在SER。
典型的
真核细胞
中心体
由一对
中心粒
组成。中心粒周围为云状电子致密物,称为中心粒周围物质
中心粒
微管
长度约为04μm,由
微管蛋白
组成,包括α/β/γ/δ/ε微管蛋白、中心体蛋白
中心体
centrin和tektin丝状体以及与它们相连的
结构蛋白
,中心体矩阵连接各种蛋白
粒体为一种体积较大的细胞器,位于细胞质内,其横径为05~10μm,长度则变化较大。在一个细胞内可少到数十个,多到几千个。以人体心肌、肝、肾、小肠上皮等细胞内最为丰富。而成熟的红细胞内没有线粒体。它的化学物质主要是脂蛋白。细胞内约80%的ATP在这里生成因而它是细胞主要的能量供应站。
因此线粒体结构和功能的正常,对维持整个细胞结构和功能的正常是十分重要的。在电镜下,线粒体属膜相结构,是由内外两层膜包围成的封闭膜性囊。
线粒体的功能
线粒体通过呼吸作用将摄取的营养物质进一步氧化,并将氧化时所产生的能转化为化学能储存起来,为细胞生命活动提供能量,因此人们称之为细胞的“动力工厂”。线粒体可以完成三羧酸循环、氧化磷酸化、电子传递、脂类和蛋白质合成。
细胞内线粒体的多少和分布与细胞需能状况密切相关,如肌纤维线粒体较多,紧贴着肌原纤维分布。肌细胞中线粒体可以通过训练使其体积增大,数量增多。
以上内容参考 ——线粒体
一、主要成分
线粒体膜以磷脂双分子层构成主要骨架,然后有蛋白质穿插,镶嵌或包裹于其中,部分蛋白质上有五碳糖,类似一般的细胞膜。
二、结构特性
1、内膜
线粒体内膜不含有孔蛋白,所以通透性较线粒体外膜低。此外,线粒体内膜中的心磷脂与离子的不可渗透性有关。相对于外膜而言,内膜对于大多数的核苷、糖类以及较小的离子等都是不通透的,这些物质进出线粒体内膜需要利用各自对应的特异性载体。
2、外膜
细胞凋亡过程中,线粒体外膜对细胞色素c等多种存在于线粒体膜间间隙中的蛋白质的通透性增加。由于线粒体外膜的通透性非常高,所以线粒体膜间间隙的环境与细胞质基质的十分接近。
扩展资料
线粒体内膜包含100多种不同的多肽,蛋白相对磷脂的比例相当高(质量比3:1,大约一个蛋白分子对15个磷脂)。此外,内膜富含一种少见的磷脂心磷脂,是细菌的质膜所特有的。
外膜包含很多称作“孔道蛋白”的整合蛋白,具有相对大的内部通道(大约2-3纳米,医学教育|网搜集可允许离子和小分子通过。而大分子不能通过外膜。内膜不含孔道蛋白,通透性很弱,几乎所有离子和分子都需要特殊的跨膜转运蛋白来进出基质。
-线粒体膜
叶绿体和线粒体在形态结构、分布范围、增大膜面积的方式和酶与色素分布上均有区别:
1、形态结构:
线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分叉状或其它形状。线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。
高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。 叶绿体由叶绿体外被、类囊体和基质3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔。
2、分布范围不同:
线粒体存在于存在于大多数细胞中,而叶绿体只存在高等植物和一些藻类之中。
3、增大膜面积的方式:
线粒体增大膜面积是通过内膜向内折叠形成嵴,是线粒体最富有标志性的结构,它的存在大大扩大了内膜的表面积,增加了内膜的代谢效率。
叶绿体增大膜面积是通过基粒片层结构(或类囊体)重叠。
4、酶与色素分布:
线粒体中酶分布于基质、基粒、内膜上;线粒体中没有色素分布。
叶绿体中酶分布于基质与基粒上;叶绿体中色素分布于基粒片层结构的薄膜上。
——线粒体
——叶绿体
欢迎分享,转载请注明来源:品搜搜测评网