主成分分析,就是要对X进行标准化处理(去除变量量纲的影响)得Xstd,之后cov(Xstd)求协方差Xcov,然后eig(Xcov)求特征值Xval和特征矩阵Xvec,将Xval从大到小排序,取80%~90%的主成分Xvalmain和Xvecmain(负荷向量),XstdXvecmain=Xscore(得分向量)
降低共线性和维度,提高回归模型的稳定性和解释能力。
1、通过对原始变量进行主成分分析,将高度相关的变量合并为几个不相关的主成分,从而解决了多重共线性的问题。
2、通过减少变量数量,降低了模型的维度,使得模型更简单和易于解释。
用得到的print值做因变量,用原始数据做自变量。然后线性回归,所得到的回归系数就是线性组合的系数,然后做的回归相当于一个线性方程组,然后就可以还原成主成分回归方程了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
扩展资料:
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。
意义:数据中心化和标准化在回归分析中是取消由于量纲不同、自身变异或者数值相差较大所引起的误差。
原理:数据标准化:是指数值减去均值,再除以标准差;
数据中心化:是指变量减去它的均值。
目的:通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。
——SPSS回归分析
主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
扩展资料主成分分析的主要作用
1.主成分分析能降低所研究的数据空间的维数。
2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3.多维数据的一种图形表示方法。
4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。
5.用主成分分析筛选回归变量。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
-主成分分析
1、首先打开SPSSAU,右上角上传数据,点击或者拖拽原始数据文件上传。
2、选择进阶方法->主成分,选择需要分析的题目,拖拽到右侧。点击“开始主成分分析”。
3、可以自行设置好要输出的主成分个数,而不是让软件自动识别。
4、完成以上操作后,即可得到分析结果,结果如下:KMO 和 Bartlett 的检验,及智能分析。
保存因子分析就好,如果用spssau分析前先勾选“因子得分”选项,即可在分析后得到因子得分项。
spss直接把几个因子都已经算出来了,就是duFAC1-1列就是因子F1,同理可以得知F2,F3不用算的,如果问F1怎么来的,就说是F1=0701X1-0549X2+0736X3+0216X4+0112X5-0318X6。
如果进行主成分分析之后又要进行回归分析,应该是用提取出来的主因子作为自变量进行计算的,回归是只能有一个自变量,一个因变量才算回归的,如果不是的话,建议你使用多项式属分析。
把因变量的值还有自变量的值放到EXCEL里,按列排列。然后全部圈起来,找图表选项,绘制散点图,之后对其中的点点击右键,进行数据拟合就可以得出式子。
扩展资料:
标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。
这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。
-回归分析
欢迎分享,转载请注明来源:品搜搜测评网