由高标准农田建设项目施工中标单位直接向项目主管部门拨付资金。按照省级土地整治项目管理办法规定,高标准农田建设资金应按照施工合同约定,根据项目进度分三至四期拨付。其中一期拨款可以作为预付款,不超过中标价的30%;末期拨款一般为工程质量保证金,占中标价的20%。
浅层地下水指的是第一隔挡层之上的浅层松散沉积物孔隙潜水。浅层地下水是一个开放体系,是大气水-地表水(生物水)-深层地下水循环体系中的重要环节和组成部分,由大气降水、地表径流透水形成,埋藏浅、更新快,水质和水量均受降水和径流影响。浅层地下水埋藏较浅,雨季时部分地势较低地区其埋深仅10~20cm,农作物根须可延伸至浅层地下水层,从中获取生长所需水分和部分养分,因此,浅层地下水的环境质量也在一定程度上影响着农产品的品质与安全。
随着工业化进程的迅速推进,山东省部分地区地表水已受到不同程度的污染,局部地区污染状况严重,对浅层地下水环境质量造成一定的影响,同时也对人们的身体健康造成潜在危害。因此,开展浅层地下水地球化学和环境质量调查与评价,对于提高农产品质量与安全、预防地方病、保障人们身体健康具有重要意义。
一、浅层地下水地球化学背景
(一)浅层地下水地球化学参数的确定
根据中国地质调查局《多目标区域地球化学调查规范(1:25万)》中水地球化学样品分析测试要求,结合鲁东地区生态地球化学调查的具体情况,兼顾其他用途,选择分析的指标为 Fe,Mn,Cu,Zn,Mo,Cd,Hg,As,Pb,Se,Ni,Be,Ba,Co,Sr,Th,U,N,P,K,Mg,Ca,Cr(六价)及pH、总硬度、溶解性总固体、氯化物、亚硝酸盐、高锰酸钾指数(COD)、氟化物、碘化物,共计31项。
浅层地下水地球化学背景值是评价浅层地下水元素丰缺、水质安全性及防治对策等研究的基本参考值。它是指在不受人类活动污染的天然状态下某区域内浅层地下水中各化学元素和水质指标的天然含量。由于区内地下水长期受人类活动的影响,已很难得到理想的水地球化学背景数据,故根据本次现有的测试结果资料,采用数理统计法计算区内浅层地下水中各元素和水质指标含量的背景值。
浅层地下水背景值参数一般包括:
1)代表浅层地下水第Ⅰ环境的地球化学元素的样本数(N)、最大值(Xmax)、最小值(Xmin)、算术平均值( )、标准离差(s)、变异系数(Cv);
2)逐步剔除平均值加减3倍标准离差后的算术平均值(X)、标准离差(s)、变异系数(Cv)、最大值(Xmax)、最小值(Xmin)等参数的统计值等。若低于总样本数1/3的样本元素含量低于检出限,则该元素含量采用检出限的一半代替,一般均被剔除;若超过2/3的样本含量低于检出限,则该元素不参与地球化学参数统计,如六价铬(Cr6+)、碘化物(I-)等。
(二)浅层地下水地球化学参数特征
1浅层地下水参数特征
浅层地下水分析结果表明,Hg,As,Se,K,Cr(六价)、碘化物等6指标含量均低于规范要求检出限,且低于《地下水质量标准》(GB/T 14848-1993)中Ⅰ类水上限,因此这些指标不参与地球化学参数统计。从本区浅层地下水23项元素或指标含量统计结果(表4-28)可以看出,原始数据最大值一般是最小值的数百倍,数千倍,甚至有些指标如可溶性固体总量、总硬度、Cl-,U,Zn,Mn,Fe,Pb,Mo,则最大值是最小值的上万倍;有些指标如 ,Cl-,Mo,Fe,Mn剔除前是剔除后均值的5倍以上,这说明剔除样本大多数为含量较高的数据部分,这部分数据可认为是在局部地质高背景或在人类活动影响下产生的异常数据。从原始数据变异系数来看,研究区浅层地下水中 pH,Ba,N 等指标变异系数<10,说明这些指标在浅层地下水中的分布相对稳定,高锰酸钾指数(COD),F-,Sr变异系数在10~20之间,其余指标变异系数均>2,特别是Mo,Pb,Mn,Fe,Cl-, ,总硬度等指标变异系数>50,说明这些指标在浅层地下水中分布极不均匀,虽然背景含量低,但在局部地段会形成高含量区,从而影响浅层地下水质量。
表4-28 浅层地下水元素地球化学含量特征参数统计表
续表
注:样品数栏“()”内数字为剔除的异常值样点数,Ba,Be,Cd,Co,Cu,Fe,Mn,Mo,Ni,Pb,Se,Zn,Th,U含量单位为μg/L,pH为无量纲,其余元素或指标含量单位为mg/L。
2不同地貌区浅层地下水指标参数特征
浅层地下水参与地下水循环,大气降水为其直接或间接补给水源。山前沟谷径流条件良好,排汇通畅;平原地区径流迟缓,浅层地下水则以垂直运动为主,滨海沿岸地区浅层地下水与海水相接,水质受海水影响较大。研究区浅层地下水分布有如下特征表(4-29):
1)中山和低山区浅层地下水中多数元素或指标含量较低,中山区仅 Fe,Zn,Pb,Mo,Mn等较高,低山区仅mo,Mn,Be,Zn,Fe,Cu,Pb 等较高,山区地下水水质好,一般可直接利用作为水源;丘陵区地下水中多数元素或指标含量高于山区,但低于平原区,以溶解性总固体,Zn,COD偏高为特征,除局部地段水质受到原生地质背景的影响和人为污染外,其余大部分地区水质良好;平原区地下水中U,Sr,N,Ni,Co,Ba,溶解性总固体、总硬度、氯化物、亚硝酸盐、氟化物等多数元素或指标含量偏高,地下水水质相对较差。
表4-29 不同地貌单元浅层地下水地球化学背景值表
注:Ba,Be,Cd,Co,Cu,Mn,Mo,Ni,Pb,Zn,Th,U,Fe的含量单位为μg/L,pH无量纲,其他元素或指标含量单位均为mg/L。
2)浅层地下水水质除受人为污染外,还受到地质背景的影响。如昌邑北部微倾斜低平原区水埋藏在较浅的含水层中,含水层水文地质环境为还原环境,铁、锰等元素呈还原态,元素易随地下水运移,另外受海侵影响,该地区地下水中氯化物、碘化物、总硬度、可溶性总固体物背景值也偏高,也系特殊地质背景的地下水含水层所致。
3)平原区(微倾斜低平原、山前倾斜平原)浅层地下水中表征水质被新近污染的指标亚硝酸盐值偏高,说明平原区地下水近年来一直受到污染,并且还有继续蔓延的趋势。丘陵区是主要的农业区,农业生产过量施用化肥和农药对地下水水质的影响越来越大。
4)研究区内城镇浅层地下水污染较重,表现为工业和城镇居民固体及液体废弃物污染地表水,地表水下渗造成浅层地下水污染。农村地区相对污染较轻,主要污染源为农业生产化肥和农药。
(三)浅层地下水地球化学分布特征
1酸碱性
水的酸碱性是评价水质好坏的重要指标之一,通常指的是水中“氢离子浓度”,用pH来表示,pH=-lg[H+]。根据 pH 可将水的酸碱度分为强酸性(pH<5)、酸性(pH 5~55)、弱酸性(pH 55~65)、中性(pH 65~75)、弱碱性(pH 75~85)、碱性(pH 85~9)、强碱性(pH>9)7级。水质好的水pH接近7,呈中性。饮用呈酸碱性的水,口感酸涩,饮后易产生恶心、呕吐、腹泻,诱发其他疾病。若将酸碱性水用于农业灌溉,将导致禾苗枯萎,严重时将造成颗粒不收。
研究结果显示(表4-30),本区大部分地区浅层地下水呈弱碱性,其次为中性,二者累计占9887%,个别点位呈弱酸性、碱性或强碱性水。各有1个点分别呈强酸性和酸性水,分布在昌邑北部沿海和招远东北。弱酸性浅层地下水主要分布在威海局部地段;呈中性的浅层地下水广泛分布在南部基岩区、威海大部分及平度—招远一带;弱碱性水集中分布在研究区中部及北部大部分地区(图4-34);碱性、强碱性水零散分布在昌邑市部和烟台局部。
表4-30 调查区浅层地下水酸碱性状况表
2总硬度
水体总硬度是指水中 Ca2+,Mg2+的总量,它包括暂时硬度和永久硬度。水中 Ca2+,Mg2+以重碳酸盐形式存在的部分,因其遇热即形成碳酸盐沉淀而被除去,故称为暂时硬度;而以硫酸盐、硝酸盐和氯化物等形式存在的部分,因其性质比较稳定,称为永久硬度。水体总硬度是表示水质的一个重要指标,对工业用水关系很大,是形成锅炉水垢的主要因素。根据硬度可将浅层地下水分成5类(表4-31)。
图4-34 浅层地下水pH值评价图
表4-31 水硬度分类表
浅层地下水硬度主要受含水岩系类型和地质背景、土壤类型、地貌特征等因素控制。研究区浅层地下水硬度区域性差异较大,以极硬水为主(表4-32),其次为中等水和硬水,部分为软水和极软水。胶莱盆地及北部大部分区域浅层地下水中含盐量和钙镁离子较高,水质多属极硬水和硬水。南部花岗岩区及威海市大部分地段,浅层地下水中的钙离子和镁离子含量也较高,水质多属微硬水。软水和极软水分布在崂山区、五莲东部和威海等局部地段(图4-35)。
表4-32 浅层地下水硬度统计表
图4-35 浅层地下水总硬度地球化学评价图
3溶解性总固体(TDS)
溶解性总固体(TDS)为水中含有各种溶解性矿物盐类的总量或矿化度,它包含了无机盐和有机物的总量。其主要成分有钙、镁、钠、钾离子和碳酸离子、碳酸氢离子、氯离子、硫酸离子和硝酸离子。溶解性总固体(TDS)代表了水中溶解物杂质含量,溶解性总固体(TDS)值越大,说明水中的杂质含量越多,反之,杂质含量越少。水中的溶解性总固体(TDS)来源于自然界、城市和农业污水及工业废水。
按溶解性总固体含量大小可将地下水分成淡水(<1000mg/L)、微咸水(1000~3000mg/L)、咸水(3000~10 000mg/L)、盐水(10 000~50 000mg/L)和卤水(>50 000mg/L)5类。受地质背景、土壤成因类型和地貌条件的影响,浅层地下水溶解性总固体含量表现出显著差异。由表4-33可见,本区浅层地下水中溶解性总固体(TDS)含量大部分<1000mg/L,属淡水区,微咸水区主要呈片状分布于胶莱盆地大部分区域以及呈带状分布在北部沿海一带;从昌邑北部沿海至昌邑市区呈条带状依次分布有卤水、盐水和咸水,其中卤水分布区目前多被开发为晒盐场,另外在仓上—三山岛一带也有小面积盐水和卤水区分布(图4-36)。
表4-33 浅层地下水矿化度统计表
图4-36 浅层地下水溶解性总固体地球化学评价图
二、浅层地下水环境质量评价
(一)浅层地下水环境质量评价标准与方法
1浅层地下水环境质量评价因子
影响地下水质量的指标和因子众多,包括构成地下水化学类型的常规水化学组成及理化指标、常见的重金属和非金属指标、有毒有害类有机污染物指标和细菌、寄生虫卵、病毒等微生物指标。根据本次研究测试的32 项指标,结合《地下水质量标准》(GB/T14848—93),选取Ba,Be,Cd,Co,Cu,Fe,Mn,Mo,Ni,Pb,Zn,pH,氯化物、氟化物、亚硝酸盐、高锰酸钾指数、总硬度、溶解性总固体等18项指标作为浅层地下水环境质量评价因子。
2浅层地下水环境质量评价标准
本次浅层地下水环境质量评价标准引用《地下水质量标准》(GB/T 14848—93)(表434)。该标准依据我国地下水质量状况和人体健康基准值,参照生活、工业、农业等用水水质要求,将地下水质量划分为5类。
表4-34 浅层地下水国家质量标准分类表
注:浅层地下水各元素或指标含量单位除pH为无量纲外,其他元素或指标含量单位均为mg/L。
Ⅰ类:地下水化学组分含量低,原则上适用于各种用途;
Ⅱ类:地下水化学组分含量较低,原则上适用于各种用途;
Ⅲ类:以人体健康基准值为依据,适用于生活饮用水、农业用水和大多数工业用水;
Ⅳ类:以农业和工业用水质量要求及人体健康风险为依据,适用于农业和部分工业用水,适当处理后可作生活饮用水;
Ⅴ类:不宜作生活饮用水,其他用水可根据使用目的选用。
3浅层地下水环境质量评价方法
1)以分析数据为基础,进行单项组分(因子)质量评价,按照《地下水质量标准》所列分类指标,划分为5类,当不同类别标准值相同时,从优不从劣。
2)采用加附注的评分方法,对地下水进行综合环境质量评价。具体要求与步骤如下:
A进行各单项组分评价,划分组分所属质量类别。
B对各类别按下列规定(表4-35)分别确定单项组分评价分值Fi。
表4-35 地下水环境类别评价分值表
C按下列公式计算出该水样点地下水的综合评价分值F:
鲁东地区农业生态地球化学研究
式中: 为各单项组分分值F的平均值;Fmax为单项组分评价分值Fi中的最大值;n为参与水质评价因子(组分)数目。
D根据计算获得的F值,按表4-36的规定确定出地下水质量级别。该评价结果中的质量分级对应于单指标评价中的5个地下水质量级别及意义,对于饮用水质评价而言,前三类水均适宜用作生活饮用水,后两类水则不适合作饮用水。
表4-36 地下水环境质量级别表
该方法的优点是数学过程简捷,运算方便;物理概念清晰,对于一个评价区,只要计算出它的综合指数,再对照相应的分级标准,便可知道评价地区地下水质量状况,便于决策者做出综合决策。缺点在于过于突出最大污染因子,由于公式中考虑最大污染因素,使参评项目中即使只有一项指标Fi值偏高,而其他指标Fi值均较低也会使综合评分值偏高;未考虑不同污染因子对环境的毒性、降解难易及去除性难易程度等因素。
(二)单因子评价结果
单因子评价统计结果(表4-37)显示,本区浅层地下水中Cd,Cu等重金属含量均较低,其单因子环境质量符合Ⅲ类水质量标准;Ba,Co,Zn元素含量较低,全区除有4件Ba、1件Co、4件Zn含量较高属Ⅳ类水外,其余均符合生活饮用及农业生产用水水质要求。Be,Mo,Ni,Pb元素含量普遍较低,绝大部分样本符合工农业生产用水水质要求。根据《地下水质量标准》(GB/T 14848—93)中Ⅲ类水(可直接饮用)标准,影响本区浅层地下水环境质量的指标包括总硬度、溶解性总固体、高锰酸钾指数(COD)、 ,Cl-,F-,Mn,Fe等8项。
根据浅层地下水超标(Ⅳ类和Ⅴ类水)的空间分布情况,Fe,Mn,Cl-、总硬度的大规模异常以自然成因为主,滨海地区含量增高,以致超过水质标准;F-异常则出现在胶莱盆地及其周边地带,主要与中生代火山岩体高氟的地质背景有关。而其他指标超标则可能是人类活动造成的,呈点(源)状分布在人口密集的乡镇及工矿企业周边。地下水指标超标可能对当居民的健康形成危害,应引起重视。
表4-37 浅层地下水单因子环境质量评价结果表
注:总样本数3695个。
1氟化物(F-)
研究区内氟化物(F-)达Ⅰ类水的点数为3322个,占总数的8991%,氟化物(F-)达Ⅳ类水的点数为202个,占总数的547%,达Ⅴ类水的点数为171个,占总数的463%。按Ⅲ类水质标准(≤10mg/L)衡量,研究区氟化物(F-)超标率为1010%,超标区出现在胶莱盆地中部和潍坊西北部,其中高密北部氟化物(F-)含量是Ⅲ类水质标准值的15~6倍(图4-37)。
高密市北部地势低洼,西南隆起,这种地势造成了南高北低的地貌特征。高密市南部发育白垩纪青山群、王氏群、莱阳群,该地层主要岩石类型为含砾砂岩、砂岩、粉砂岩、页岩、火山碎屑岩、火山熔岩等,含氟均较高(表4-38),由表4-38可以看出:由莱阳群—青山群—王氏群,F元素平均含量逐渐增高,并且岩石颗粒越细含F量越高,且明显高于本区中酸性侵入岩及其他地层F的平均含量;高F物质经风化、搬运、沉积、水解等作用析出,并随地下水径流、迁移到北部低洼地区,地下水径流变得密闭滞缓,在较低洼的汇水区易溶盐类通过毛细管随水分上升到地表蒸发浓缩,又被大气降水溶解渗入潜水中,这种过程不断反复,使浅层地下水中氟浓度不断升高。可见,高密市北部地区不仅具备了充足的氟源,而且具有稳定的使氟富集的环境条件(土壤质地、地形地貌、蒸发浓缩)。属于典型的浅层径流滞缓富集浓缩成因。
图4-37 浅层地下水氟化物(F-)环境质量分级图
表4-38 高密南部岩石含量平均值表 w(F)/10-6
2溶解性总固体(TDS)和总硬度
钙、镁、钠、钾、铁、锰等阳离子和重碳酸根、氯离子、硫酸根等阴离子是溶解性总固体的主要组成部分,其总量占溶解性总固体的95%以上。总硬度指的是水中所含钙、镁离子的总量。浅层地下水溶解性总固体与总硬度之间有着密切的内在联系,溶解性总固体含量高的浅层地下水中硬度也往往较高,因此,两者的区域分布特征基本一致。
胶莱盆地特别是诸城—高密—莱西及昌邑北部(图4-38),由于土壤的脱盐化过程发育不完全并且地势易遭受海水侵入,钙、镁、钠和氯离子等含量往往较高,导致浅层地下水溶解性总固体和总硬度增高,大部分已超过地下水质量标准限制值,水环境质量多属Ⅳ类或Ⅴ类。南部及东部侵入岩地区,海水入侵现象轻,浅层地下水以淡水为主,硬度多属微硬水或软水,因此,浅层地下水中总硬度、溶解性总固体含量低,水质多属Ⅰ,Ⅱ类水。按Ⅲ类水质标准衡量,区内浅层地下水中总硬度超标率达3470%,溶解性总固体(TDS)超标率达2065%。
图4-38 浅层地下水总硬度环境质量分级图
3高锰酸钾指数(COD)
研究区内浅层地下水高锰酸钾指数(COD)以Ⅰ类水为主,达Ⅰ类水的点数为2461个,占6660%,达Ⅱ类水的点数为953个,占2579%,达Ⅲ类水的点数为168个,占455%,Ⅳ类水的点数为 100个,占 271%,Ⅴ类水的点数为 13个,占 035%。按Ⅲ类水质标准(≤30mg/L)衡量,调查区高锰酸钾指数(COD)超标率为306%,超标地区主要分布在昌邑西北和东北部,多属Ⅳ类水质区(图4-39),另外零星分布在蓬莱、胶南、平度和胶州等地区,其原因可能与该地区企业“三废”排放污染地下水有关。
图4-39 浅层地下水高锰酸钾指数环境质量分级图
4亚硝酸盐( )
亚硝酸盐污染与人类活动密切相关,主要是由人类生产生活过程中污水排放并随地表水向下渗透与浅层地下水发生混合作用后形成厌氧环境而产生的,在厌氧条件下,硝酸盐也易转变为亚硝酸盐。研究认为,本区浅层地下水亚硝酸盐( )超标现象较为严重。
浅层地下水中亚硝酸盐( )达Ⅰ类水的点数为271个,占733%,达Ⅱ类水的点数为1795个,占4858%,达Ⅲ类水的点数为608个,占1645%,达Ⅳ类水的点数为747个,占2022%,达Ⅴ类水的点数为274个,占742%。按亚硝酸盐( )Ⅲ类水质标准(≤0066mg/L)衡量,调查区内浅层地下水中亚硝酸盐( )超标率为2764%,超标区域主要分布在研究区中北部和南部局部地段(图4-40),其中昌邑、莱州—平度及诸城和威海局部浅层地下水中亚硝酸盐( )污染严重,其环境质量已达Ⅴ类,应引起重视。
(三)综合评价结果
综合评价结果表明,鲁东地区浅层地下水环境质量总体状况较差,Ⅳ类和Ⅴ类水占总评价面积的4488%,其中Ⅳ类水占4375%(图4-41),大部分地区浅层地下水不宜直接饮用,其分布特征见浅层地下水环境质量分区图(图4-42)。
图4-40 浅层地下水亚硝酸盐环境质量分级图
Ⅱ类可供饮用的良好级浅层地下水分布范围占调查区总面积的1727%,主要分布于山区和山前地带,包括崂山、大朱山—小朱山、五莲山、沂山及昆俞山山区,以上地区浅层地下水中除Mn, 局部属Ⅳ类水外,其余Ba,Co,Zn,Mo,Ni,总硬度,溶解性总固体,高锰酸钾指数等16项指标均达到Ⅰ类或Ⅱ类水质标准。Ⅲ类可供集中式生活饮用及工农业用水的较好级浅层地下水分布研究区南部和东部地带,占总面积的3785%。
图4-41 浅层地下水综合环境质量组成图
Ⅳ类适用于农业和部分工业用水,适当处理后可作为生活饮用水的较差级浅层地下水分布范围占研究区面积的4375%。胶莱盆地及其周边地带浅层地下水污染主要以农业、生活和地质背景为主,农业污染指标是 ,生活地下水污染高锰酸钾指数, ,Mn,Mo较为普遍,多发生在高密、平度、胶州、昌邑等城市及工矿企业和其周边地带,常形成点(源)状、线状污染;受地质背景影响,总硬度,溶解性总固体,F-,Cl-超标现象较严重,其中F-超Ⅲ类水质区占研究区面积1010%,范围与胶莱盆地范围较吻合,是地氟病高发区。此外,较差级浅层地下水还分布在沂南—莒南丘陵区及荣成—威海一带,主要与Mn,Fe超标有关。
图4-42 浅层地下水综合环境质量分级图
Ⅴ类不宜饮用的极差级浅层地下水分布范围占研究区面积的113%,小面积分布在胶莱盆地中心地带,水中总硬度、溶解性总固体,F-,Mo超标较普遍,另外分布在昌邑北部沿海地带卤水区(TDS>50 g/L),多与海水入侵产生的Cl-、总硬度超标有关,此外高锰酸钾指数,Be,Fe,Mn,Mo等多项指标超标也较普遍。
三、浅层地下水农用灌溉适宜性评价
(一)评价标准与评价方法
本区农灌用地下水主要是浅层地下水,因此浅层地下水环境质量与农业生产、农产品品质和安全关系密切,并在一定程度上影响着农业生产的结构和布局。因此在进行上述环境质量评价基础上对浅层地下水的农用灌溉适宜性进行评价。
评价采用的质量标准为《农田灌溉水质标准》(GB 5084—2005)(表4-39),参评指标包括:As,Cd,Cr6+,Cu,Hg,Pb,Se,Zn,pH,高锰酸盐指数,氯化物,氟化物、氰化物共计13项。先对有关指标进行单因子适宜性评价,然后采用“一票否决”的评价方法对农田灌溉用水进行总体评价。适宜性评价分水作、旱作和蔬菜三大类,由于不同种类农作物灌溉用水质量评价标准值多数是一致或接近的,且研究区绝大多数农用地为旱地,因此,评价统一采用旱作指标进行评价。
表4-39 农田灌溉用水水质基本控制指标标准值(旱作)表
注:表中指标除pH为无量纲外,其余指标单位均为mg/L。
(二)评价结果
研究区浅层地下水农田灌溉(旱作)适宜性评价结果(表4-40)显示,区内绝大部分地区浅层地下水符合农田用水质量要求,适宜农业生产。影响本区浅层地下水灌溉质量的主要指标为氯化物,其次为氟化物、Se,其他元素或指标影响程度轻微。不适宜灌溉的浅层地下水主要分布在高密—昌邑及潍坊北部晒盐厂(卤水区),超标指标主要为氯化物和氟化物,其次零星分布在蓬莱、莱西、即墨和沂南等地,超标指标主要为Se,Hg,As等元素。
表4-40 浅层地下水非适宜于农田灌溉用水样品数统计表
通透性好。在种植农作物的时候,会进行特殊的土壤,高度肥沃的旱地土壤都具有上虚下实的土体构造,即耕作层疏松、深厚,质地较轻,上面可以更好的呼吸通风,这样的通透性好,保水保肥能力强有机质含量高。
欢迎分享,转载请注明来源:品搜搜测评网