那个就是上面式子的实部和虚部分开写的得到两个方程。求频率w的时候先利用虚部的方程得到w的值。再带入实部的方程中求得k值在时域分析中已经看到,控制系统的性能取决于系统的闭环传递函数,因此,可以根据系统闭环传递函数的零、极点研究控制系统性能。但对于高阶系统,采用解析法求取系统的闭环特征方程根(闭环极点)通常是比较困难的,且当系统某一参数(如开环增益)发生变化时,又需要重新计算,这就给系统分析带来很大的不便。
1948年,伊万思根据反馈系统中开、闭环传递函数间的内在联系,提出了求解闭环特征方程根的比较简易的图解方法,这种方法称为根轨迹法。因为根轨迹法直观形象,所以在控制工程中获得了广泛应用。根轨迹是当开环系统某一参数(如根轨迹增益 )从零变化到无穷时,闭环特征方程的根在S平面上移动的轨迹。根轨迹增益K 是首1形式开环传递函数对应的系数。

在介绍图解法之前,先用直接求根的方法来说明根轨迹的含义。控制系统如上图所示。其开环传递函数为:利用计算结果在S平面上描点并用平滑曲线将其连接,便得到K (或K)从零变化到无穷大时闭环极点在S平面上移动的轨迹,即根轨迹,如下图所示。图中,根轨迹用粗实线表示,箭头表示K (或K)增大时两条根轨迹移动的方向根轨迹的概念
开环系统某一参数从零变换到无穷,闭环系统特征方程式的根在s平面上变化的轨迹。其中某一参数主要是指根轨迹增益,当然也可以是系统中其他的实参数。
根轨迹方程

将上式写为相角及模值条件,根据这两个条件可以完全确定s平面上的根轨迹和根轨迹上的K值。

根轨迹与系统性能
1 稳定性
当参数由零变化到无穷时,根轨迹不会越过虚轴进入s右半平面则说明系统对于所有的K值都是稳定的,如果根轨迹越过虚轴进入s右半平面,则系统进入不稳定的状态。
2稳态特性
一般情况下,根轨迹图上标注的参数不是开环增益而是根轨迹增益,根轨迹增益与稳态误差系数之间仅相差一个比例常数,
3动态特性
当所有闭环极点都位于实轴上时,系统为过阻尼系统;
当极点重合时,系统为临界阻尼系统;
当闭环极点为共轭复数极点,系统为欠阻尼系统,单位阶跃响应是衰减振荡过程,且超调量将随着K值的增大而增大。
确定闭环系统的零极点
当根轨迹增益确定时,传递函数也同时确定下来了,那么闭环系统的零极点位置就在根轨迹上确定下来了,通过位置可以判断系统的稳定性能。
打开CSDN,阅读体验更佳
matlab求系统根轨迹和系统增益,控制系统的根轨迹分析
一、根轨迹分析方法的概念所谓根轨迹是指,当开环系统某一参数从零变到无穷大时,闭环系统特征方程的根在s平面上的轨迹。一般来说,这一参数选作开环系统的增益K,而在无零极点对消时,闭环系统特征方程的根就是闭环传递函数的极点。根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可以对系统进行各种性能分析,1.稳定性当开环增益K从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半s平面
继续访问
【自动控制原理】根轨迹Root Locus-笔记
重点掌握根的变化规律。从而设计控制器/补偿器。“根”——“极点”(一样的概念)一阶系统比如这个系统传递函数为,对这个系统施加一个冲击u(t)=,的Laplace变换=1。所以系统的输出为,令s+a=0,得“根”P=-a进行Laplace的逆变换,得到这个系统的时间函数,这里的-a就是它的根当a>0时,它在时间轴上的表现为指数衰减对于一般的一阶系统来说,如果把它的根在复平面上(横轴为实数,竖轴为虚数)表达出来的话,它一定落在实轴上,如图一阶函数的。
继续访问

一阶系统开环传递函数表达式_古典控制理论(三)根轨迹法(闭环系统)
1 根轨迹与系统性能(1)定义:指系统某一参数从零变化到无穷大时,闭环系统特征方程式的根(闭环极点)在s平面上变化的轨迹。 Matlab命令:rlocus(sys),默认变化参数为开环传递函数的增益k。(2)功能:根轨迹可以直接给出闭环系统时间相应的全部信息,而且可以指明开环零、极点应该如何变化才能满足给定的闭环系统的性能指标要求。 根轨迹方法可以求解高阶代数方程的根,实际上就是解决闭环特征方程
继续访问
传递函数根轨迹
根轨迹 以及时域响应,自动控制,各个方面的自动控制都有用,直接出根轨迹
Simulink模型闭环传递函数导出及Matlab对simulink模型进行频域分析(含实现程序)
Simulink模型闭环传递函数导出及使用Matlab函数对simulink模型进行频域分析,并在文章中给出含实现程序。
继续访问

控制教程 —— 介绍篇:4根轨迹控制器设计
在本教程中,我们将介绍根轨迹,展示如何使用MATLAB来创建根轨迹,并演示如何通过使用根轨迹来设计满足某些性能指标的反馈控制器。 本教程中使用的主要MATLAB命令包括:feedback,rlocus,step,controlSystemDesigner。 闭环极点 开环传递函数 H(s)H(s)H(s) 的根轨迹通常是在比例增益 KKK 在0到 ∞\infty∞ 变化时,形成的闭环极点的轨迹曲线
继续访问

根轨迹和频率响应
首先我们来了解一下根的定义,在一个闭环一阶系统中,存在过度函数G(s)为s的一个式子,那么它可能会存在零点和极点,说到极点想必大家都非常熟悉了,在此,我们可以理解为“根”=“极点”。根轨迹的画法呢我简单提一下,根轨迹是有开环极点指向开环零点,从左向右,两两对应,如果缺少对应的,则以无穷极点/零点代替(举个例子,假如只有一个极点,没有零点,那么根轨迹就是由这个极点指向负无穷),另外,根轨迹是对称于实轴的,其汇合点和分离点并非重点,感兴趣的同学可以自己搜索一下了解一下。最终可由增益的取值范围判断系统的稳定性。
继续访问

根轨迹和系统参数的确定
1、根轨迹 前面有讲到通过闭环传递函数的极点分布情况来判断系统是否稳定。当然还有些更简单的判别方式,例如:劳斯稳定性判据、赫尔维茨稳定性判据等。但都是判断系统是否稳定的,那么怎么判断系统的稳定程度(稳定裕度)呢?或者说当一个系统参数
继续访问

matlab闭环传函的根轨迹,自动控制系统的设计--基于根轨迹的串联校正设计
与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。
继续访问

20200518 如何快速画出闭环特征方程的根轨迹
Q: 什么是根轨迹法? A: 给一个闭环的特征方程,随着某一个参数变化,闭环特征方程的根(即闭环传递函数的极点)不断变化,描述根的变化轨迹的图叫做根轨迹图。 Q: 针对的是开环系统还是闭环系统? A: 利用开环系统的零极点研究闭环系统的极点(根)。 Q: 开环传递函数和闭环传递函数的区别? A: 闭环传递函数是G1+GH\frac{G}{1+GH}1+GHG,开环传递函数是GHGHGH。 Q: 如何快速近似画出根轨迹? A: 首先介绍不著名的异性相吸理论(瞎编的)。
继续访问

绘制课本中的根轨迹图与零极点分布图
《信号与系统》第三版下册-郑君里 例11-8 已知反馈系统结构如图11-21所示,试绘制其根轨迹图。 这个图绘制的是A(s)F(s)的根轨迹图,并不是整个闭环系统的根轨迹图,也不是A(s)的根轨迹图 这道题的解析部分其实是为了计算在横轴上的交汇点。 ---------------------------------------------------------------------------------------------------------------------
继续访问

应用根轨迹分析系统性能
应用根轨迹分析系统性能 本节通过几个实例简要介绍根轨迹方法在分析和设计系统中的应用。 531 单参数设计 例 54: 已知系统的方框图如下: 试通过根轨迹方法确定合适的反馈系数 k ,使得系统具有阻尼比为 04 的闭环共轭复数极点。 解:由方框图可得系统的开环传递函数为:
继续访问
根轨迹分析
应用MATLAB进行根轨迹分析
继续访问

matlab闭环传函的根轨迹,开环传递函数的跟轨迹与虚轴的交点怎么算
大学自动控制原理,已知开环传递函数求闭环根轨迹图中的一个步骤不懂计算(求根轨迹与虚轴的交点)一个复数等于0,结果是实部等于0虚部等于0,这个太简单了吧再问:详细点还是不懂再答:-w^3j-6w^2+9wj+k=0,(-w^3+9w)j+(-6w^2+k)=0,得-w^3+9w=0,-6w^2如何matlab画开环传递函数的奈奎斯特图用MATLAB做出奈奎斯特曲线图%k=10k=10;d=conv(
继续访问
【自动控制原理】 根轨迹法之根轨迹法分析系统性能
本文主要讲述了使用根轨迹法分析系统稳定性的原理,以及根据根轨迹设计参数Kg的方法步骤。最后给出了主导极点、偶极子对和开环零点对系统性能的影响
继续访问

matlab求系统根轨迹和系统增益,《自动控制原理》实验报告(线性系统的根轨迹)
实验四线性系统的根轨迹一、实验目的1熟悉 MATLAB 用于控制系统中的一些基本编程语句和格式。2利用 MATLAB 语句绘制系统的根轨迹。3掌握用根轨迹分析系统性能的图解方法。4掌握系统参数变化对特征根位置的影响。基础知识及 MATLAB函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在 s 平面上的变化轨迹。这个参数一般选为开环系统的增益 K 。课本中介绍的手工绘制根轨迹的方
继续访问
最新发布 817自动控制原理-1-开环传递函数与闭环传递函数
首先,开环传递函数是针对闭环系统而言的,而不是指开环系统的传递函数。eg输入作用下的开环传递函数:G(s)=G1H2H3/(1-G2H1)输入作用下的误差传递函数:R(s)/E(s)=(1-G2H2)/(1-G2H2+G1G2H3)
继续访问
热门推荐 【自控原理】第四章 根轨迹法
文章目录A 根轨迹法的基本概念B 根轨迹方程C 绘制根轨迹的法则Ca 根轨迹法则介绍Cb 根轨迹法则(常规根轨迹)D 利用根轨迹分析系统的方法 引言 闭环控制系统的稳定性和性能指标主要由闭环系统的极点在复数平面上的位置决定。 分析和设计系统时确定闭环极点(即特征根)在复平 面的位置是十分有意义的: 闭环系统的极点在复平面的位置决定了系统的稳 定性 系统的性能指标也主要由闭环极点的位置决定
继续访问

matlab-自控原理 rlocus 根轨迹 根据传递函数画图
2019独角兽企业重金招聘Python工程师标准>>>
继续访问
其他
写评论

评论

1

点赞

踩

分享
前往CSDN APP阅读全文
阅读体验更佳

CSDN
成就一亿技术人
前往

夸克浏览器
根轨迹的概念
开环系统某一参数从零变换到无穷,闭环系统特征方程式的根在s平面上变化的轨迹。其中某一参数主要是指根轨迹增益,当然也可以是系统中其他的实参数。
根轨迹方程

将上式写为相角及模值条件,根据这两个条件可以完全确定s平面上的根轨迹和根轨迹上的K值。

根轨迹与系统性能
1 稳定性
当参数由零变化到无穷时,根轨迹不会越过虚轴进入s右半平面则说明系统对于所有的K值都是稳定的,如果根轨迹越过虚轴进入s右半平面,则系统进入不稳定的状态。
2稳态特性
一般情况下,根轨迹图上标注的参数不是开环增益而是根轨迹增益,根轨迹增益与稳态误差系数之间仅相差一个比例常数,
3动态特性
当所有闭环极点都位于实轴上时,系统为过阻尼系统;
当极点重合时,系统为临界阻尼系统;
当闭环极点为共轭复数极点,系统为欠阻尼系统,单位阶跃响应是衰减振荡过程,且超调量将随着K值的增大而增大。
确定闭环系统的零极点
当根轨迹增益确定时,传递函数也同时确定下来了,那么闭环系统的零极点位置就在根轨迹上确定下来了,通过位置可以判断系统的稳定性能。
打开CSDN,阅读体验更佳
matlab求系统根轨迹和系统增益,控制系统的根轨迹分析
一、根轨迹分析方法的概念所谓根轨迹是指,当开环系统某一参数从零变到无穷大时,闭环系统特征方程的根在s平面上的轨迹。一般来说,这一参数选作开环系统的增益K,而在无零极点对消时,闭环系统特征方程的根就是闭环传递函数的极点。根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可以对系统进行各种性能分析,1.稳定性当开环增益K从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半s平面
继续访问
【自动控制原理】根轨迹Root Locus-笔记
重点掌握根的变化规律。从而设计控制器/补偿器。“根”——“极点”(一样的概念)一阶系统比如这个系统传递函数为,对这个系统施加一个冲击u(t)=,的Laplace变换=1。所以系统的输出为,令s+a=0,得“根”P=-a进行Laplace的逆变换,得到这个系统的时间函数,这里的-a就是它的根当a>0时,它在时间轴上的表现为指数衰减对于一般的一阶系统来说,如果把它的根在复平面上(横轴为实数,竖轴为虚数)表达出来的话,它一定落在实轴上,如图一阶函数的。
继续访问

一阶系统开环传递函数表达式_古典控制理论(三)根轨迹法(闭环系统)
1 根轨迹与系统性能(1)定义:指系统某一参数从零变化到无穷大时,闭环系统特征方程式的根(闭环极点)在s平面上变化的轨迹。 Matlab命令:rlocus(sys),默认变化参数为开环传递函数的增益k。(2)功能:根轨迹可以直接给出闭环系统时间相应的全部信息,而且可以指明开环零、极点应该如何变化才能满足给定的闭环系统的性能指标要求。 根轨迹方法可以求解高阶代数方程的根,实际上就是解决闭环特征方程
继续访问
传递函数根轨迹
根轨迹 以及时域响应,自动控制,各个方面的自动控制都有用,直接出根轨迹
Simulink模型闭环传递函数导出及Matlab对simulink模型进行频域分析(含实现程序)
Simulink模型闭环传递函数导出及使用Matlab函数对simulink模型进行频域分析,并在文章中给出含实现程序。
继续访问

控制教程 —— 介绍篇:4根轨迹控制器设计
在本教程中,我们将介绍根轨迹,展示如何使用MATLAB来创建根轨迹,并演示如何通过使用根轨迹来设计满足某些性能指标的反馈控制器。 本教程中使用的主要MATLAB命令包括:feedback,rlocus,step,controlSystemDesigner。 闭环极点 开环传递函数 H(s)H(s)H(s) 的根轨迹通常是在比例增益 KKK 在0到 ∞\infty∞ 变化时,形成的闭环极点的轨迹曲线
继续访问

根轨迹和频率响应
首先我们来了解一下根的定义,在一个闭环一阶系统中,存在过度函数G(s)为s的一个式子,那么它可能会存在零点和极点,说到极点想必大家都非常熟悉了,在此,我们可以理解为“根”=“极点”。根轨迹的画法呢我简单提一下,根轨迹是有开环极点指向开环零点,从左向右,两两对应,如果缺少对应的,则以无穷极点/零点代替(举个例子,假如只有一个极点,没有零点,那么根轨迹就是由这个极点指向负无穷),另外,根轨迹是对称于实轴的,其汇合点和分离点并非重点,感兴趣的同学可以自己搜索一下了解一下。最终可由增益的取值范围判断系统的稳定性。
继续访问

根轨迹和系统参数的确定
1、根轨迹 前面有讲到通过闭环传递函数的极点分布情况来判断系统是否稳定。当然还有些更简单的判别方式,例如:劳斯稳定性判据、赫尔维茨稳定性判据等。但都是判断系统是否稳定的,那么怎么判断系统的稳定程度(稳定裕度)呢?或者说当一个系统参数
继续访问

matlab闭环传函的根轨迹,自动控制系统的设计--基于根轨迹的串联校正设计
与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。
继续访问

20200518 如何快速画出闭环特征方程的根轨迹
Q: 什么是根轨迹法? A: 给一个闭环的特征方程,随着某一个参数变化,闭环特征方程的根(即闭环传递函数的极点)不断变化,描述根的变化轨迹的图叫做根轨迹图。 Q: 针对的是开环系统还是闭环系统? A: 利用开环系统的零极点研究闭环系统的极点(根)。 Q: 开环传递函数和闭环传递函数的区别? A: 闭环传递函数是G1+GH\frac{G}{1+GH}1+GHG,开环传递函数是GHGHGH。 Q: 如何快速近似画出根轨迹? A: 首先介绍不著名的异性相吸理论(瞎编的)。
继续访问

绘制课本中的根轨迹图与零极点分布图
《信号与系统》第三版下册-郑君里 例11-8 已知反馈系统结构如图11-21所示,试绘制其根轨迹图。 这个图绘制的是A(s)F(s)的根轨迹图,并不是整个闭环系统的根轨迹图,也不是A(s)的根轨迹图 这道题的解析部分其实是为了计算在横轴上的交汇点。 ---------------------------------------------------------------------------------------------------------------------
继续访问

应用根轨迹分析系统性能
应用根轨迹分析系统性能 本节通过几个实例简要介绍根轨迹方法在分析和设计系统中的应用。 531 单参数设计 例 54: 已知系统的方框图如下: 试通过根轨迹方法确定合适的反馈系数 k ,使得系统具有阻尼比为 04 的闭环共轭复数极点。 解:由方框图可得系统的开环传递函数为:
继续访问
根轨迹分析
应用MATLAB进行根轨迹分析
继续访问

matlab闭环传函的根轨迹,开环传递函数的跟轨迹与虚轴的交点怎么算
大学自动控制原理,已知开环传递函数求闭环根轨迹图中的一个步骤不懂计算(求根轨迹与虚轴的交点)一个复数等于0,结果是实部等于0虚部等于0,这个太简单了吧再问:详细点还是不懂再答:-w^3j-6w^2+9wj+k=0,(-w^3+9w)j+(-6w^2+k)=0,得-w^3+9w=0,-6w^2如何matlab画开环传递函数的奈奎斯特图用MATLAB做出奈奎斯特曲线图%k=10k=10;d=conv(
继续访问
【自动控制原理】 根轨迹法之根轨迹法分析系统性能
本文主要讲述了使用根轨迹法分析系统稳定性的原理,以及根据根轨迹设计参数Kg的方法步骤。最后给出了主导极点、偶极子对和开环零点对系统性能的影响
继续访问

matlab求系统根轨迹和系统增益,《自动控制原理》实验报告(线性系统的根轨迹)
实验四线性系统的根轨迹一、实验目的1熟悉 MATLAB 用于控制系统中的一些基本编程语句和格式。2利用 MATLAB 语句绘制系统的根轨迹。3掌握用根轨迹分析系统性能的图解方法。4掌握系统参数变化对特征根位置的影响。基础知识及 MATLAB函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在 s 平面上的变化轨迹。这个参数一般选为开环系统的增益 K 。课本中介绍的手工绘制根轨迹的方
继续访问
最新发布 817自动控制原理-1-开环传递函数与闭环传递函数
首先,开环传递函数是针对闭环系统而言的,而不是指开环系统的传递函数。eg输入作用下的开环传递函数:G(s)=G1H2H3/(1-G2H1)输入作用下的误差传递函数:R(s)/E(s)=(1-G2H2)/(1-G2H2+G1G2H3)
继续访问
热门推荐 【自控原理】第四章 根轨迹法
文章目录A 根轨迹法的基本概念B 根轨迹方程C 绘制根轨迹的法则Ca 根轨迹法则介绍Cb 根轨迹法则(常规根轨迹)D 利用根轨迹分析系统的方法 引言 闭环控制系统的稳定性和性能指标主要由闭环系统的极点在复数平面上的位置决定。 分析和设计系统时确定闭环极点(即特征根)在复平 面的位置是十分有意义的: 闭环系统的极点在复平面的位置决定了系统的稳 定性 系统的性能指标也主要由闭环极点的位置决定
继续访问

matlab-自控原理 rlocus 根轨迹 根据传递函数画图
2019独角兽企业重金招聘Python工程师标准>>>
继续访问
其他
写评论

评论

1

点赞

踩

分享
前往CSDN APP阅读全文
阅读体验更佳

CSDN
成就一亿技术人
前往

夸克浏览器
欢迎分享,转载请注明来源:品搜搜测评网