结合数模培训和参赛的经验,可采用数据挖掘中的多元回归分析,主成分分析、人工神经网络等方法在建模中的一些成功应用。以全国大学生数学建模竞赛题为例,数据处理软件Excel、Spss、Matlab在数学建模中的应用及其重要性。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
扩展资料
建模过程
1、模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
2、模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3、模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
4、模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
5、模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
6、模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
7、模型应用与推广
应用方式因问题的性质和建模的目的而异,而模型的推广就是在现有模型的基础上对模型有一个更加全面的考虑,建立更符合现实情况的模型。
-数学建模
spss主成分分析法详细步骤:
1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。如图1所示:
2、打开因子分析界面之后,把需要进行分析的变量全部选进变量对话框,然后点击右上角的描述。如图2所示:
3、勾选原始分析结果、KMO检验对话框,然后点击继续。如图3所示:
4、点击抽取,方法里选择主成分再点击碎石图。如图4所示:
5、点击旋转,再点击最大方差旋转。如图5所示:
6、点击得分,再点击,保存为变量及显示因子得分系数矩阵。如图6所示:
7、最后点确定就可以在输出截面看到主成分分析的结果了。如图7所示:
扩展资料:
SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。
用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。
其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口。
但是我们并不能直接拿着数据去做后面的差异分析,得将数据归一化后才能进行下一步操作。那么问题来了,为什么得归一化后才能进行下一步操作,如何归一化。
这里我采用的是使用DESeq2包归一化的两种方法获取归一化数值(当然你也可以采用其它办法归一化),有对归一化过程感兴趣的可以看归一化的算法, excel演示DESeq2归一化原理 - (jianshucom)
为了探究样本之间的相关性,将使用两个方法主成分分析(PCA)和相关性分析并进行层次聚类分析方法执行样本级质量控制。这些方法允许我们检查重复样本彼此之间的相似程度(聚类),并确保实验条件是数据变异的主要来源。
1什么是PCA:笔记正在写
2什么是相关性分析并进行层次聚类分析方法:
1 协方差与相关系数 - (jianshucom)
2层次聚类是将研究对象按照它们的相似性关系用树形图进行呈现。
也可以根据这篇文章画PCA分析图 R语言主成分分析(PCA)加“置信椭圆” - (jianshucom)
横纵坐标为各个样本,将这些样本两两进行比较,得出皮尔森相关系数。图中可以看出,样本自己与自己比较,皮尔森相关系数是1,与其他样本进行比较,皮尔森相关系数均大于09表明各样本之间的正相关性比较好,这也说明送样样本的生物学重复很好,数据是可信的。
欢迎分享,转载请注明来源:品搜搜测评网