庖丁材料 井水(价格:50)从井中汲取出来的清水,用途十分广泛。 精制调味包(价格:200)要想做成好吃的菜肴一般不可缺少的一种调味料。 酵母(价格:500)发酵的必须品,厨房中不可缺少的食材。 专业腌制料(价格:1000)专业的腌制调味料,调制菜肴的重要物品之一。 以上材料可在“魏国魏郡,洛阳白虎区,襄阳;蜀国巴郡,成都罗城,临江;吴国吴郡,建业商埠区,江夏”等地的千货商处购买获得。 桂圆(价格:500)制作“钙化大骨”等食物需要 以上材料可在“魏国跑马岭关驿”的千货商处购买获得。 杏仁(价格:300)制作“五花肉”等食物需要 糯米(价格:250)制作“女儿红”等食物需要 以上材料可在“魏国轩辕山驿站”的千货商处购买获得。 辣酱(价格:200)制作“牙签滑鱼”等食物需要 以上材料可在“蜀国古道关驿”的千货商处购买获得。 豆瓣(价格:250)制作“八粮液,饺子”等食物需要 胡椒(价格:600) 香料(价格:800) 以上材料可在“蜀国泽林驿站”的千货商处购买获得。 肉桂(价格:1000)制作“一飞冲天”等食物需要 以上材料可在“吴国北固山关驿”的千货商处购买获得。 精盐(价格:500)制作“狗不理猪肉”等食物需要 干果(价格:200)制作“猴儿酒”等食物需要甘湖堂驿站 以上材料可在“吴国甘棠湖军驿”的千货商处购买获得。 莲子(价格:1000) 果脯(价格:1000) 八角(价格:500) 以上材料可在“江陵”的千货商处购买获得。
脂质在什么地方合成
脂质在什么地方合成,拥有秾纤合度的身材是每位女性的梦想,因此减肥成了女性一辈子的功课,但你有没有这样的经验,不管吃再少、动再多,顽固的脂肪就是不肯离开你的身体,下面看看脂质在什么地方合成。
脂质在什么地方合成1对于真核生物,脂质合成是在光面内质网上,因为脂质合成的酶类位于光面内质网; 对于原核生物,纸质合成是在细胞质基质中,因为脂质合成的酶类位于细胞质基质。
脂质的合成场所是肝、脂肪组织及小肠,脂类是人体需要的重要营养素之一,供给机体所需的能量、提供机体所需的必需脂肪酸,是人体细胞组织的组成成分。人体每天需摄取一定量脂类物质,但摄入过多可导致高脂血症、动脉粥样硬化等疾病的发生和发展。
脂类是油、脂肪、类脂的总称。食物中的油脂主要是油、脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。脂类是人体需要的重要营养素之一,它与蛋白质、碳水化合物是产能的三大营养素,在供给人体能量方面起着重要作用。脂类也是人体细胞组织的组成成分,如细胞膜、神经髓鞘都必须有脂类参与。
脂质合成在什么部位取决于合成脂质的酶存在于什么部位。
1、对于真核生物,脂质合成是在光面内质网上,因为脂质合成的酶类位于光面内质网;
2、对于原核生物,纸质合成是在细胞质基质中,因为脂质合成的酶类位于细胞质基质。
脂质在什么地方合成2对于真核生物,脂质合成是在光面内质网上,因为脂质合成的酶类位于光面内质网;
对于原核生物,纸质合成是在细胞质基质中,因为脂质合成的酶类位于细胞质基质。
这与呼吸作用是类似的。真核生物在线粒体;原核生物在细胞质基质。也是因为呼吸酶的分布不同。
生物合成:
1、脂肪酸
脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。
丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂酸(或C18的硬脂酸),但这是包括在酰基载体蛋白(ACP)参与下的脱羧、C2单位缩合、以及由NADPH还原过程在内的反复进行的复杂过程。
产生的脂肪酸作为CoA衍生物,在线粒体中与乙酰CoA,在微粒体中与丙二酸单酰CoA缩合,每次增加两个碳,不断延长碳链。
而单不饱和脂肪酸,由饱和酰基CoA(或ACP)的好氧的不饱和化(微粒体,微生物等。必须有O2和NADH)而产生,或由脂肪酸生物合成途中的β-羟酰ACP的脱水反应(及碳键延长)而产生。
多聚不饱和脂肪酸在高等动物不一定产生,可以从摄取的不饱和酸的碳素链的延长等而转变形成。另外环丙烷脂肪酸由S-腺苷甲硫氨酸的C1,结合于不饱和酸的双键上而产生。脂肪酸作为CoA衍生物,用于合成各种底物。
2、其他脂类:磷脂的生成
磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。
扩展资料
功能
1、能量储存
是能量储存的最佳方式,如动物、油料种子的甘油三酯。通过如下数据对照,可以得出结论:
体内的两种能源物质比较(糖类、脂类)
单位重量的供能:糖41千卡/克,脂93千卡/克。
储存体积:1糖元或淀粉:2水,脂则是纯的,体积小得多。
动用先后:糖类优先被消耗,然后是脂类。因此,很多减肥/瘦身原理、辟谷等,皆源于此。
2、生物膜的骨架
细胞膜的液态镶嵌模型:磷脂双酯层,胆固醇,蛋白质,糖脂,甘油磷脂和鞘磷脂。
3、电与热的绝缘体
动物的脂肪组织有保温,防机械压力等保护功能,植物的蜡质可以防止水分的蒸发。
电绝缘:神经细胞的鞘细胞,电线的包皮,神经短路。
热绝缘:冬天保暖,企鹅、北极熊等。
4、其他
信号传递:固醇类激素。
酶的激活剂:卵磷脂激活β-羟丁酸脱氢酶。
糖基载体:合成糖蛋白时,磷酸多萜醇作为羰基的`载体。
激素、维生素和色素的前体(萜类、固醇类)。
生长因子与抗氧化剂。
参与信号识别和免疫(糖脂)。
脂质在什么地方合成3对于真核生物来说,脂质的合成部位是在光面内质网上,原因是脂质合成的酶位于光面内质网上,而对于原核生物来说,脂质的合成部位是在细胞质基质中,因为脂质合成的酶位于细胞质基质中。
脂类是人体需要的重要营养素之一,它可以供给机体所需的能量并提供机体所需的必需脂肪酸,是人体细胞组织的组成成分。人体每天需摄取一定量的脂类物质,但摄入过多可导致高脂血症、动脉粥样硬化等疾病的发生和发展。
脂质包括
1、脂肪 功能:细胞内良好的储能物质;减少热量散失,维持体温恒定;减少内脏器官之间的摩擦,具有缓冲外界压力的作用
2、磷脂 功能:是构成细胞膜、线粒体膜、叶绿体膜等结构的重要成分—— 一切细胞中均含磷脂
3、固醇 ⑴胆固醇 功能:是构成细胞膜的重要成分,在人体内还参与血液中的脂质运输
⑵性激素 功能:促进生殖器官的发育和两性生殖细胞的形成,激发并维持雌雄性动物第二性征
⑶维D 功能:促进人体和动物对钙和磷的吸收和利用 类脂是指生物体内,除脂肪外的所有脂类,主要包括磷脂、糖脂、类固醇。类脂是构成生物膜的主要成分,可以转化成体内重要的生物活性物质,参与细胞间识别、细胞信号传导等活动,与生物特异性等有关,还可以构成血浆脂蛋白。
1、磷脂:指含有磷酸的类脂,主要存在于脑、骨髓、神经组织,以及心、肝、肾等器官中,又可以分为甘油磷脂和鞘磷脂;
2、糖脂:指含有糖基的类脂,可以分为甘油糖脂和鞘糖脂。鞘糖脂也可称为糖鞘脂,重要的鞘糖脂包括脑苷脂、神经节苷脂、血型物质等;
3、类固醇:主要包括胆固醇、胆汁酸、类固醇激素等。胆固醇在脑和神经组织中含量较丰富,可以转化变成胆汁酸和类固醇激素。胆汁酸为胆汁的主要组成成分,在胆汁中以钠盐或钾盐形式存在。类固醇激素分为肾上腺皮质激素和性激素,如醛固酮、皮质酮、皮质醇、雄激素、雌激素等。
核苷酸(hé gān suān) Nucleotide,一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。
基本介绍 中文名 :核苷酸 英文名 :Nucleotide 别称 :核甙酸 套用 :具有多种重要的生物学功能 定义,合成,分布,功能,代谢,合成代谢,分解代谢,代谢调节,与医学的联系,嘌呤核苷酸,合成代谢,分解代谢,嘧啶核苷酸,合成代谢,分解代谢,相关名词,核苷酸,核苷多磷酸,核苷酸衍生物,腺苷酸衍生物,鸟苷酸衍生物,胞苷酸衍生物,尿苷酸衍生物,利用,调味料,食品添加剂,医疗医药,母婴用品, 定义 一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称 核甙酸 。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。 合成 核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起著主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。 核苷酸 在生物体内,核苷酸可由一些简单的化合物合成。这些合成原料有天门冬氨酸、甘氨酸、谷氨酰胺、一碳单位及 CO 2 等。嘌呤核苷酸在体内分解代谢可产生尿酸,嘧啶核苷酸分解生成CO 2 、β-丙氨酸及β-氨基异丁酸等。嘌呤核苷酸及嘧啶核苷酸的代谢紊乱可引起临床症状(见嘌呤代谢紊乱、嘧啶代谢紊乱)。 核苷酸类化合物也有作为药物用于临床治疗者,例如肿瘤化学治疗中常用的5-氟尿嘧啶及6-巯基嘌呤等。 有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP)。5'-核苷酸的磷酸基还可进一步磷酸化生成二磷酸核苷(NDP)及三磷酸核苷(NTP),其中磷酸之间是以高能键相连。脱氧核苷酸的情况也是如此。 体内还有一类环化核苷酸,即单核苷酸中磷酸部分与核糖中第三位和第五位碳原子同时脱水缩合形成一个环状二酯、即3',5'-环化核苷酸,重要的有3',5'-环腺苷酸(cAMP)和3',5'-环鸟苷酸(cGMP)。 分布 核苷酸是核酸的基本结构单位,人体内的核苷酸主要有机体细胞自身合成。核苷酸在体内的分布广泛。细胞中主要以5′-核苷酸形式存在。细胞中核糖核苷酸的浓度远远超过脱氧核糖核苷酸。不同类型细胞中的各种核苷酸含量差异很大,同一细胞中,各种核苷酸含量也有差异,核苷酸总量变化不大。 功能 核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面: ① 核苷酸是合成生物大分子核糖核酸 (RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP,这四种类型的核苷酸从头合成前身物是磷酸核糖、胺基酸、一碳单位及二氧化碳等简单物质。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,它们是由各自相应的核碳核苷酸在二磷酸水平上还原而成的。 ② 三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。 核苷酸 ③ ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。 ④ 腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD + )、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP + )、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD + 及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。 ⑤ 核苷酸对于许多基本的生物学过程有一定的调节作用。一切生物体的基本成分,对生物的生长、发育、繁殖和遗传都起著主宰作用。如在奶粉作为维持宝宝胃肠道正常功能,减少腹泻和便秘、提高免疫力,少生病的作用。 代谢 可从合成代谢、分解代谢及代谢调节三个方面讨论。 合成代谢 嘌呤核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO 2 及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(又称肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成5-磷酸核糖1-焦磷酸。(PRPP),这是一个重要的反应。嘌呤核苷酸的从头合成主要是在肝脏中进行,其次是在小肠黏膜及胸腺中进行。 核苷酸 嘌呤核苷酸降解可产生嘌呤碱,嘌呤碱最终分解为尿酸,其中部分分解产物可被重新利用再合成嘌呤核苷酸,这称为回收合成代谢途径,可在骨髓及脾脏等组织中进行。嘌呤核苷酸降解产生的腺嘌呤、鸟嘌呤及次黄嘌呤在磷酸核糖转移酶的催化下,接受3'-焦磷酸-5-磷酸核糖(PRPP)分子中的磷酸核糖,生成相应的嘌呤核苷酸。此合成途径也具有一定意义。 嘧啶核苷酸的从头合成主要也在肝脏中进行。合成原料为氨基甲酰磷酸及天门冬氨酸等。氨基甲酰磷酸及天门冬氨酸经过数步酶促反应生成尿苷酸,尿苷酸转变为三磷酸尿苷后,从谷氨酰胺接受氨基生成三磷酸胞苷。 上述体内合成的嘌呤及嘧啶核苷酸均系一磷酸核苷。它们均可在磷酸激酶的催化下,接受 ATP提供的磷酸基,进一步转变为二磷酸核苷及三磷酸核苷。 体内还有一类脱氧核糖核苷酸。它们是dAMP、dGMP、dCMP及dTMP。它们组成中的脱氧核糖并非先生成而后组合到核苷酸分子中去,而是通过业已合成的核糖核苷酸的还原作用而生成的。此还原作用发生于二磷酸核苷分子水平上,dADP、dGDP、dCDP及dUDP均可由此而来,但dTMP则不同,它是由dUMP经甲基化作用而生成的。 分解代谢 嘌呤核苷酸在体内进行分解代谢,经脱氨基作用生成次黄嘌呤及黄嘌呤,再在黄嘌呤氧代酶催化下,经过氧化作用,最终生成尿酸。尿酸可随尿排出体外,正常人每日尿酸排出量为06g。嘧啶核苷酸在体内的分解产物为CO2,β-丙氨酸及β-氨基异丁酸等。 代谢调节 核苷酸在体内的合成受到反馈性的调节作用。嘌呤核苷酸合成的终产物是AMP及GMP,它们可以反馈性地抑制由 IMP转变为AMP及GMP的反应。它们可与 IMP一齐反馈性地抑制合成途径的起始反应PRPP的生成。嘧啶核苷酸合成的产物 CTP也可反馈性地抑制嘧啶合成的起始反应。 与医学的联系 可从代谢异常所致疾病及作为药物两方面讨论。 ① 核苷酸代谢的异常。GMP及IMP的回收合成需次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)参与。此酶遗传性缺乏则2~3岁时就可出现智力发育障碍、共济失调,敌对性及侵占性及自毁容貌的表现(莱施-尼汉二氏综合征)。患儿嘌呤核苷酸的从头合成仍可正常进行,但回收合成的障碍就可造成严重后果。 核苷酸 嘌呤核苷酸分解代谢的终产物为尿酸。正常人血中尿酸含量约为2~6mg%,血中尿酸水平的升高(高尿酸血症)常见于痛风。血中尿酸含量超过8mg%时,尿酸就以钠盐形式沉积于关节、软组织、软骨及肾脏等处。原发性痛风症是一种先天代谢缺陷性疾病。患者体内的次黄嘌呤-鸟嘌呤磷酸核糖转移酶部分缺乏,致使IMP及GMP 的回收合成减少,结果造成嘌呤核苷酸的从头合成加快。此外,患者体内的磷酸核糖焦磷酸激酶活性异常增高,以致大量地生成PRPP,促使从头合成加快,这些都造成尿酸的大量产生。原发性痛风症可用别嘌呤醇治疗。别嘌呤醇的结构与次黄嘌呤相似,是黄嘌呤氧化酶的抑制剂,可抑制次黄嘌呤及黄嘌呤转变为尿酸的反应,降低血中尿酸水平。继发性痛风,可见于各种肾脏疾病、血液病及淋巴瘤等。患者细胞中核酸大量分解,因而尿酸生成增多。 cAMP对细胞的一些生理活动有广泛的影响。cAMP的合成不足或作用失调与有些疾病过程有关。例如,支气管喘息及银屑病组织中cAMP量较低,又如糖尿病人各种代谢的异常与肝及脂肪组织中cAMP的生成过多也是有联系的。 嘧啶合成障碍有乳清酸尿症,为乳清酸磷酸核糖转移酶及乳清酸核苷酸脱羧酶缺乏所致。 ② 核苷酸类似物的临床套用。核苷酸类似物6-巯基嘌呤(6MP)及5-氟尿嘧啶(5FU)用于肿瘤的化学治疗。6-巯基嘌呤的结构与次黄嘌呤相似,其一磷酸核苷对于AMP及GMP合成有关的几个酶有抑制作用,从而选择性地阻止肿瘤的生长。5-氟尿嘧啶的结构与胸腺嘧啶相似,它在体内可转变为一磷酸脱氧核糖氟尿嘧啶核苷(5Fd-UMP)及三磷酸氟尿嘧啶(FUMP)。它们对于胸苷酸合成中的甲基化作用有较强的抑制作用,从而造成癌细胞的死亡。 嘌呤核苷酸 合成代谢 体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。 ⒈嘌呤核苷酸的从头合成 肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠黏膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO 2 等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N 1 由天冬氨酸提供,C 2 由N 10 -甲酰FH 4 提供、C 8 由N 5 ,N 10 -甲炔FH 4 提供,N 3 、N 9 由谷氨酰胺提供,C 4 、C 5 、N 7 由甘氨酸提供,C 6 由CO 2 提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP水解供能,而IMP转变成GMP时需要ATP水解供能。 ⒉嘌呤核苷酸的补救合成 反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些胺基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。 ⒊嘌呤核苷酸的相互转变 IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。 ⒋脱氧核苷酸的生成 体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。 ⒌嘌呤核苷酸的抗代谢物 ①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP套用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。 ②胺基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。 ③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。 分解代谢 分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。 ⒈从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、胺基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。 ⒉补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。 ⒊自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。 嘧啶核苷酸 合成代谢 ⒈嘧啶核苷酸的从头合成 肝是体内从头合成嘧啶核苷酸的主要器官。嘧啶核苷酸从头合成的原料是天冬氨酸、谷氨酰胺、CO 2 等。反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合成过程:形成的第一个嘧啶核苷酸是乳氢酸核苷酸(OMP),进而形成尿嘧啶核苷酸(UMP),UMP在一系列酶的作用下生成CTP。dTMP由dUMP经甲基化生成的。嘧啶核苷酸从头合成的特点是先合成嘧啶环,再磷酸核糖化生成核苷酸。 ⒉嘧啶核苷酸的补救合成 主要酶是嘧啶磷酸核糖转移酶,能利用尿嘧啶、胸腺嘧啶及乳氢酸作为底物,对胞嘧啶不起作用。 ⒊嘧啶核苷酸的抗代谢物 ①嘧啶类似物:主要有5-氟尿嘧啶(5-FU),在体内转变为FdUMP或FUTP后发挥作用。 ②胺基酸类似物:同嘌呤抗代谢物。 ③叶酸类似物:同嘌呤抗代谢物。 ④阿糖胞苷:抑制CDP还原成dCDP。 分解代谢 嘧啶核苷酸在酶作用下生成磷酸、核糖及自由碱基,产生的嘧啶碱进一步分解。胞嘧啶脱氨基转变成尿嘧啶,尿嘧啶最终生成NH 3 、CO 2 及β-丙氨酸。胸腺嘧啶降解成β-氨基异丁酸。 相关名词 核苷酸 核苷的磷酸酯,磷酸基与糖上的羟基连线。因为核糖有 3个羟基,所以核糖核苷酸如腺嘌呤核苷酸(简称腺苷酸)。脱氧核糖有两个羟基,因而脱氧核糖核苷酸如腺嘌呤脱氧核糖核苷酸(简称脱氧腺苷酸)只有两种。 核苷多磷酸 含两个以上磷酸基的核苷酸。只带一个磷酸基的核苷酸,叫核苷一磷酸,带两个磷酸基的核苷酸叫核苷二磷酸,依此类推。如腺嘌呤核苷酸有腺苷一磷酸(即腺苷酸,AMP)、腺苷二磷酸(ADP)、腺苷三磷酸(ATP)和脱氧腺苷一磷酸(即脱氧腺苷酸,dAMP)、脱氧腺苷二磷酸(dADP)、脱氧腺苷三磷酸(dATP)。天然的核苷多磷酸中,磷酸基多是与戊糖的5′-羟基相连。4 种核苷三磷酸(ATP、GTP、CTP和UTP)、4 种脱氧核苷三磷酸(dATP、dGTP、dCTP和dTTP)分别是RNA和DNA生物合成的原料。 寡核苷酸与多核苷酸 2~20个核苷酸连线而成的化合物叫寡核苷酸。20个以上的核苷酸组成的化合物叫多核苷酸。核酸是一种多核苷酸。 核苷酸衍生物 腺苷酸衍生物 ADP和ATP是体内参与氧化磷酸化的高能化合物,ATP也是细胞内最丰富的游离核苷酸(如哺乳动物细胞中ATP浓度接近1毫克分子),水解1克分子ATP约释放7000卡能量。 核苷酸 腺苷-3′,5′-磷酸即环腺苷酸,主要存在于动物细胞中,生物体内的激素通过引起细胞内cAMP的含量发生变化,从而调节糖原、脂肪代谢、蛋白质和核酸的生物合成,所以cAMP被称为第二信使。 2′,5′-寡聚腺苷酸,通常由3个腺苷酸通过2′,5-磷酸二酯键联接而成,即pppA⑵p⑸A⑵P⑸A,是干扰素发挥作用的一个媒介,具有抗病毒、抑制DNA合成和细胞生长、调节免疫反应等生物功能。 几个重要的辅酶都是腺苷酸衍生物。ATP 就是其中最重要的一个。此外,NA、NAD和FAD,可通过氢原子的得失参与许多氧化还原反应。辅酶 A行使活化脂肪酸功能,与脂肪酸、萜类和类固醇生物合成有关。 腺苷-3′-磷酸-5′-磷酰硫酸是硫酸根的活化形式,蛋白聚糖的糖组分中硫酸根的来源。甲硫氨酸被腺苷活化得到S-腺苷甲硫氨酸,它在生物体内广泛用作甲基供体。 鸟苷酸衍生物 在某些需能反应中,如蛋白质生物合成的起始和延伸,不能使用ADP和ATP,而要GDP和GTP参与反应。鸟苷-3′,5′-磷酸也是一个细胞信号分子,在某些情况下,cGMP与cAMP是一对相互制约的化合物,两者一起调节细胞内许多重要反应。鸟苷-3′-二磷酸-5′-二磷酸 (ppGpp)和鸟苷-3′-二磷酸-5′-三磷酸(pppGpp)则与基因表达的调控有关。 核苷酸 胞苷酸衍生物 CDP和CTP也是一类高能化合物。与磷脂类代谢有关的胞苷酸衍生物有CDP-胆碱、CDP-乙醇胺、CDP-二甘油酯等。 尿苷酸衍生物 在糖代谢中起着重要作用,UDP是单糖的活化载体,参与糖与双糖多糖的生物合成,如UDP-半乳糖是乳糖的前体,UDP-葡萄糖是糖原的前体,UDP-N-乙酰葡糖胺与糖蛋白生物合成有关。UDP和 UTP也是一类高能磷酸化合物。 利用 调味料 鸟苷酸(GMP)、肌苷酸(IMP)等核苷酸属于呈味性核苷酸,除了本身具有鲜味之外,还有和左旋谷氨酸(味素)组合时,有提高鲜味的作用,作为调料、汤料的原料使用。 食品添加剂 母乳中含有尿苷酸(UMP)、胞苷酸(CMP)、腺苷酸(AMP)、鸟苷酸(GMP)、肌苷酸(IMP)等多种核苷酸,为提高婴儿的免疫调节功能和记忆力发挥著作用,在欧美、日本等国家生产的婴儿奶粉均按照母乳中的含量有添加微量核苷酸。也有添加RNA的例子。1991年欧共体对婴幼儿食品中核苷酸的添加水平规定了上限:每420kj食品中cmp25mg,ump175mg,amp15mg,gmp05mg,imp10mg。2005年中国卫生部15号公布推荐,核苷酸在婴幼儿配方粉中的添加量为02~058g/kg(以核苷酸总量计)。中国也有专利介绍添加核酸或核苷酸的高能牛奶,易被人体吸收,可以促进血液循环,改善脑机能,促进新陈代谢,抗疲劳,抗辐射,增强体制,提高免疫力等作用。 医疗医药 核苷酸作为医药,可抑制尿道发炎,在美国也有作为免疫调节剂给手术后的患者使用的例子。 母婴用品 核苷酸在婴幼儿产品上多用于生产益生元葡萄糖、奶粉类、米粉类等产品。关于核苷酸添加2013年有新的添加标准,只能添加在奶粉类,不可添加在葡萄糖、米粉类。
欢迎分享,转载请注明来源:品搜搜测评网