1、 log(a)(MN)=log(a)(M)+log(a)(N);
2、log(a)(M/N)=log(a)(M)-log(a)(N);
3、log(a)(M^n)=nlog(a)(M) (n∈R);
4、log(A)M=log(b)M/log(b)A (b>0且b≠1);
5、对数恒等式:a^log(a)N=N,log(a)a^b=b;
6、log(a)M^(1/n)=(1/n)log(a)M;
7、 log(a)M^(-1/n)=(-1/n)log(a)M;
8、log(a^n)M^n=log(a)M;
9、log(a^n)M^m=(m/n)log(a)M;
10、log(a)b×log(b)c×log(c)a=1。
log对数函数运算注意事项
1、若式中幂指数则有以下的正数的算术根的对数运算法则,一个正数的算术根的对数,等于被开方数的对数除以根指数。
2、定义域x为真数,真数必须为正数,故定义域为{x|x>0}。每次进行拆分时保证每个真数为正数,如log2(-2(-4))不能拆分,但是其本身可以计算。
3、以10为底的对数函数通常记为lg,以自然数e(大约为2718)为底的对数函数,通常记为ln。
log基本运算公式如下:
1、loga(MN)=logaM+logaN;
2、loga(M/N)=logaM-logaN;
3、logaNn=nlogaN;
4、logMN=logaM/logaN;
5、logMN=-logNM;
6、log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);
7、loga(b)logb(a)=1;
8、loge(x)=ln(x);
9、lg(x)=log10(x)。
log函数的性质
如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。对数函数化简问题,底数则要>0且≠1真数>0。
并且在比较两个函数值时如果底数一样,真数越大,函数值越大,(a>1时)。如果底数一样,真数越大,函数值越小,(0<a<1时)。
log以2为底是非常常见的一种对数函数,并且在计算机科学中,它也被广泛应用。要在计算器上按照2为底的对数计算,你需要按如下步骤:
首先,确定你想要计算的数值。我们以8为例。
然后,按下log键。在某些科学计算器上,该键可能会标有“log”,在其他计算器上,您可能需要按下Shift或2nd键,然后按log键。
接下来,键入你想要计算对数的数值(在这种情况下是8)。这将在屏幕上显示“log(8)”。
最后,按下“=”键,计算器将显示计算结果。
如果你的计算器没有特定的log键,你可以使用以下公式计算以2为底的对数:log2(x) = log10(x) / log10(2) 这意味着你可以从计算器上计算一个数的常规对数(以10为底),然后除以以10为底的2的对数。
需要注意的是,对数函数的值通常是带有小数点的。例如,log2(8) = 3。此外,log函数在计算机科学中非常常见,并且在处理算法的时间复杂度等方面非常有用。掌握怎样在计算器上计算以2为底的对数将有助于您更好地理解这些概念。
总之,要在计算器上计算以2为底的对数,您需要按log键,键入您要进行计算的数字,然后按=键。您还可以使用公式log2(x) = log10(x) / log10(2)来计算以2为底的对数。
log函数运算公式是y=logax(a>0 & a≠1)。
一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N\u003e0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=log(a)X,(其中a是常数,a\u003e0且a不等于1)叫做对数函数。Log函数的运算公式主要有运算法则、换底公式和推导公式。
一、运算法则:
1、Log a(MN)=log aM+logaN
2、log a(M/N)=log aM-logaN
3、logaNn=nlogaN
4、(n,M,N∈R)
如果a=em,则m为数a的自然对数,即lna=m,e=2718281828…为自然对数的底,其为无限不循环小数。定义:若an=b(a\u003e0,a≠1)则n=log ab。
二、换底公式(很重要)
Log MN=log a M/log aN
换底公式导出
Log MN= -log NM
三、推导公式
Log (1/a) (1/b) = log (a^-1) (b^-1) = -1logab/-1 = log a(b)
Log a(b)log b(a) =1
loge(x)= ln (x)
lg(x)=log10(x)
了解了log函数的运算公式,才能够对函数公式灵活地进行转化,从而进一步提高运算的效率和准确性。
1、对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
2、值域:实数集R,显然对数函数无界;
3、定点:对数函数的函数图像恒过定点(1,0);
4、单调性:a>1时,在定义域上为单调增函数;
5、0<a<1时,在定义域上为单调减函数;
6、奇偶性:非奇非偶函数
7、周期性:不是周期函数
log函数产生历史
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。
德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。
欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。
log函数运算公式是y=logax(a>0&af1)。
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且af1),则x叫作以a为底N的对数记做x=log(a)(N),其中a要写于log右下。其中a叫作对数的底,N叫作真数。通常我们将以10为底的对数叫作常用对数,以e为底的对数称为自然对数。
如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫作以a为底N的对数,记作log aN=b。读作以a为底N的对数,其中a叫作对数的底数,N叫作真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫作对数函数。它实际上就是指数函数的反函数。
正如除法是乘法的倒数反之亦然,这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数,在简单的情况下乘数中的对数计数因子,更一般来说乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果因此可以对于b不等于1的任何两人正实数b和x计算对数。
对数函数的运算性质:
如果a>0,且a不等于1,M>0,N>0,那么:
1、log(a)(MN)=log(a)(M)+log(a)(N)。
2、log(a)(M/N)=log(a)(M)-log(a)(N)。
3、log(a)(M^n)=nlog(a)(M)(n属于R)。
4、log(a^k)^(M^n)=(n/k)log(a)(M)(n属于R)。
5、a^log(a)(N)=N。
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
其他性质:
1、换底公式log(a)(N)=log(b)(N)÷log(b)(a)
2、log(a)(b)=1/log(b)(a)
3、对数函数的图像都过(1,0)点。
4、对于y=log(a)(n)函数
当0<a1时,图像上显示函数为(0,+∞)单增,随着a的增大,图像逐渐以(10)点为轴逆时针转动,但不超过X=15。与其他函数与反函数之间图像关系相同,对数函数和指数函数的图像关于直线y=x对称。
对数函数性质
定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
log是对数函数,而又有定义:当x趋于无限时,lim(1+1/x)^x=e,e是一个无限不循环小数,其值约等于2718281828…
因此:loge=lge=log(e) = 043429448190324
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。
这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。
在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
扩展资料:
对数函数的应用
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。
Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。
自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。
此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
——对数
欢迎分享,转载请注明来源:品搜搜测评网