复合函数用泰勒展开必须从里面开始展开吗

复合函数用泰勒展开必须从里面开始展开吗,第1张

在将复合函数进行泰勒展开时,并不一定要从里面开始展开。泰勒展开可以从任意点开始进行,并且可以根据需要选择任意阶数进行展开。通常,我们会选择以便于计算的点作为展开的起始点,例如函数的极值点、零点或者其他容易计算的点。展开的阶数越高,结果越接近原函数。当然,如果需要更准确的近似,还可以使用带有余项的泰勒展开。总之,泰勒展开的起始点和展开阶数取决于具体的情况和需求。

其实只要掌握好奇偶函数的定义,自己推一下是非常容易的。

记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)],

如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],

则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;

当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。

如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。

所以由两个函数复合而成的复合函数,当里层的函数是偶函数时,复合函数的偶函数,不论外层是怎样的函数;当里层的函数是奇函数、外层的函数也是奇函数时,复合函数是奇函数,当里层的函数是奇函数、外层的函数是偶函数时,复合函数是偶函数。

在其它的情况下,就不能判断复合函数的奇偶性了。

可以,只要符合无穷小替换的条件就行。

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

结果为:1/1+x²

解题过程如下:

∵y=arctanx

∴x=tany

arctanx′=1/tany′

tany′=(siny/cosy)′

=cosycosy-siny(-siny)/cos²y

=1/cos²y

则arctanx′=cos²y

=cos²y/sin²y+cos²y

=1/1+tan²y

=1/1+x²

扩展资料

求导公式:

1、C'=0(C为常数);

2、(Xn)'=nX(n-1) (n∈R);

3、(sinX)'=cosX;

4、(cosX)'=-sinX;

5、(aX)'=aXIna (ln为自然对数);

6、(logaX)'=1/(Xlna) (a>0,且a≠1);

7、(tanX)'=1/(cosX)2=(secX)2

8、(cotX)'=-1/(sinX)2=-(cscX)2

9、(secX)'=tanX secX;

10、(cscX)'=-cotX cscX;

求导方法:

求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

 

中存在隐函数

 

,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即

 

,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2560098.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-13
下一篇2023-12-13

随机推荐

发表评论

登录后才能评论
保存