小学北师大版数学学高斯求和公式。
在北师大版数学三年级拓展课中的第1课时是高斯求和。
高斯求和一共有4个公式,分别是:末项等于首项加项数减1乘以公差。项数等于末项减首项除以公差加1。首项等于末项减去项数减1乘以公差。和等于首项加末项乘以项数除以2。均运用于等差数列求和中。
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5,…,100; (2)1,3,5,7,9,…,99; (3)8,15,22,29,36,…,71。 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。例1
1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例2
11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。例3
3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。例4
求首项是25,公差是3的等差数列的前40项的和。解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
1-3+5-7+9…-1999+2001
题目
S=2001-1999+1997-1995…-3+1
把顺序颠倒
2S=2002-2002+2002-2002……
第一项加最后一项
第二项加倒数第二项
S=1001
高斯求和
Sn=(A1+An)N/2
末项公式即高斯求和公式
末项=首项+(项数-1)公差
项数=(末项-首项)/公差+1
首项=末项-(项数-1)公差
和=(首项+末项)项数/2
扩展资料
高斯求和文字表述:和=(首项 + 末项)x项数 /2数学表达:1+2+3+4+……+ n = (n+1)n /2
约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代
欢迎分享,转载请注明来源:品搜搜测评网