6 维生素
6·1 概述
维生素是一类人体不能合成,但又是机体正常生理代谢所必需,且功能各异的微量分子有机化合物,具有下列共同的特点:①以本体或前体化合物存在于天然食物中;②在体内不能合成,必须由食物供给;③在机体内不提供能量,不参与机体组织的构成,但在调节物质代谢的过程中却起着十分重要的作用;④机体缺乏维生素时,物质代谢发生障碍,表现出不同的缺乏症。
维生素有三种命名系统。一是按发现的历史顺序,以英文字母顺次命名,如维生素A、维生素B、维生素C、维生素E等;二是按其特有的功能命名,如抗干眼病维生素、抗癞皮病维生素、抗环血酸等;三是按其化学结构命名,如视黄醇、硫胺素、核黄素等。三种命名系统互相通用。
维生素的种类很多,化学结构差异很大,通常按照其溶解性质将其分为脂肪溶性和水溶性两大类。脂溶性维生素包括维生素A、维生素D、维生素E、维生素K,水溶性维生素包括B族维生素(维生素B1 、维生素B2、尼克酸、泛酸、维生素B6、叶酸、维生素B12、生物素、胆碱)和维生素C。脂溶性维生素在机体内的吸收往往与机体对脂肪的吸收有关,且排汇效率不高,摄入过多可在体内蓄积,以至产生有害影响,而水溶性维生素排泄率高,一般不在体内蓄积,毒性较低,但超过生理需要量过多时,可能出现维生素和其他营养素代谢不正常等不良作用。
还有一些化合物,如生物类黄酮、牛磺酸、肉碱、肌醇、辅酶Q等,它们的活性类似维生素,称类维生素。
许多因素可对致人体维生素不足或缺乏。人类维生素的缺乏包括原发性和继发性:原发性缺乏主要是由于食物中供给量不足,继发性缺乏是由于维生素在体内吸收障碍,破坏分解增强和生理需要量增加等因素造成。维生素缺乏在体内是一个渐进过程;初始储备量降低,继则有关生化代谢异常、生理功能改变,然后才是组织病理变化并出现临床症状和体征。轻度维生素缺乏并不一定出现临床症状,但可使劳动效下降,对疾病低抗力低等,称为亚临床缺乏或不足。由于亚临床缺乏症状不明显,不特异,往往被人们忽视,故应对此有高度警惕性。临床上常见多种维生素混合缺乏的症状和体征。
6·2 维生素A(视黄醇,抗干眼病维生素)
6·2·1 维生素A的理化性质
维生素A又称视黄醇,仅存在于动物性食物中。在动物体内以两种形式存在,即视黄醇(retinol,A1)和脱氢视黄醇(dehydrretinol,A2),而棕榈酸视黄酯是主要的储存形式。维生素A的生物活性是以醇、醛、酸的形式存在的,在体内视黄醇可以被氧化为视黄醛(retinal),视黄醛可进一步氧化为视黄酸(retinoic acid)。视黄醛是维生素A的主要活性形式。部分类胡萝卜素可在体内转为维生素A,因此被称为维生素A原。目前发现约有50种天然类胡萝卜素能转化为维生素A。其中比较重要的有Ββ-胡萝卜素、α-胡萝卜素、γ-胡萝卜素等,以β-胡萝卜素的活性最高,它常与叶绿素并存。由β-胡萝卜素转化成的维生素A约占人体维生素A需要量的2/3。
维生素A与胡萝卜素均溶于脂肪及大多数有机溶剂中,不溶于水。天然存在于动物性食品中的维生素A是相对稳定的,一般烹调和罐头加工都不易破坏。但视黄醇及其同系物在氧的作用下,极不稳定,仅以弱氧化剂即可将视黄醇氧化,紫外线能促进这种氧化过程的发生。在无氧条件下,视黄醛对碱稳定,但在酸中不稳定。油脂在酸败过程中,其所含的维生素A会受到严重的破坏,但食物中含有的磷脂、维生素E及其他抗氧化物质,均有提高维生素A稳定性的作用。
多数国家根据吸收率和转化效率,采用1μg全反式视黄醇相当于6μg β-胡萝卜素、相当于12μg其他维生素A原类胡萝卜素的折算法计算食物的视黄醇当量(RE)。即RE(μg)=视黄醇(μg)+0.167×β胡萝卜素(μg))0.084×其他维生素A原类胡萝卜素(μg)。
过去对有维生素A生物活性物质的量通常用国际单位(IU)表示。
1000IU的维生素A相当于300μg的视而不见黄醇。
1μgRE=3.33IU维生素A=6μgβ-胡萝卜素
6·2·2 维生素A的吸收及代谢
食物中维生素A大都是以视黄酯(retinyl ester)的形式存在。视黄酯和维生素A原类胡萝卜素经胃内的蛋白酶当消化作用后从食物中释出,并与其他脂质聚合,在小肠中经胆盐和胰脂酶的共同作用,视黄醇和胡萝卜醇(叶黄素)的酯被水解。视黄醇、胡萝卜醇和类胡萝卜素烃等消化产物一起被乳化后,由肠黏膜吸收。小肠中胆汁是乳化的必要条件,足够量的脂肪促进维生素A的吸收,抗氧化剂如维生素E和卵磷脂也有利于维生素A吸收。矿物油的服用,肠道存在寄生虫等均不利于吸收。维生素A吸收率明显高于胡萝卜素,后者吸收量与其摄入量呈负相关,且更为明显地依赖于胆盐的存在。
在人体内,将全反式β-胡萝卜素和其他维生素A原类胡萝卜素转变成维生素A的主要途径是氧化裂解胡萝卜素中间位置的15,15′双键。1分子β-胡萝卜素可以形成2分子维生素A,而其他维生素A原分解后只能形成1分子维生素A。维生素A大多数从淋巴管经胸导管进入肝脏,并在此酯化储存于肝实质细胞和星状细胞中,营养良好者的肝脏中能储存维生素A总量的90%以上。肾脏中储存量约为肝脏的1%。眼色素上皮中维生素A则是视网膜备用库。影响维生素A储存的因素主要有摄入量、膳食成分、机体生理状况、机体储存与释放效率等。
维生素A在体内平均半减期为128~154d,当无维生素A摄入时,每日肝脏中消耗的速度约为其含量的0.5%。通常体内的维生素A可被羟化、环氧化、脱水和碳-碳键氧化分裂等作用而失去活性。
6·2·3 维生素A的生理功能
(1)维持正常视觉 维生素A最常见的作用是暗光下保持一定视力,与预防夜盲症有关。人眼视网膜含有两种光接收器,即暗光下敏感的杆状细胞及对强光敏感的锥状细胞。视紫红质是视网膜杆状细胞内的光敏感色素,由视蛋白质和视黄醛缩合而成。
视紧红质感光后,视黄醛的空间构间构型发生改变,最后曲11-顺式高黄醛转变为全反型视黄醛,以致与视蛋白分离(即视紫红质被漂白),此变化引发神经冲动,传入大脑即变为影像,这一过程光适应。此时若进入暗处,因对光敏感的视紫红质消失,故不能见物。但若有充足的全反型视黄醛(来自肝脏及视紫红质视紫漂白产物)又可被视黄醛异构酶异构化,形成11-顺型视黄醛、接着氧化为11-顺型高黄醛,并重新合成视应。暗适应的快慢取决于进入暗处前照射光的性质(波长、强度、照射时间)以及机体内维生素A的营养水平。若将照射光的条件固定下来,则暗适应的快慢只决定于机体维生素A的营养水平,维生素A充足,则视紫红质再生快而完全,暗适应时间短,如果维生素A不足,则暗适应时间长,严重时可造成夜盲症(雀盲),病人往往在黄昏或明亮处进入暗处时,不能看清物体。
(2)维持上皮细胞结构的完整性,上皮组织遍布于全身各处,如表皮、呼吸道、消化道、泌尿系统及腺体组织。维生素A在维持人皮细胞的正常生长和分化中起着十分重要的作用。维生素A缺乏时,可引起上皮组织改变,如腺体分泌减少,皮肤干燥,角化过度及增生,脱屑等,最终导致相应组织器官功能障碍。其可能的作用机制是:维生素A有可能参与糖基转移酶系统的功能,对糖的基起运转和活化作用。当维生素A不足时,会抑制黏膜细胞中糖蛋白的的生物合成,从而影响黏膜的正常功能。
(3)促进生长发育,维持正常免疫功能 维生素A可促进蛋白质的生物合成及骨细胞的分化,加速生长,并能增强机体低抗力。美国流行病学、预防眼科专家阿尔弗雷德研究认为:维生素A缺乏的儿童较正常儿童发育迟缓、易患贫血、传染病和引起死亡,其发病程度与维生素A缺乏程度直接相关;如果补充维生素A至一定量则可使生长加快,疾病死亡率比同样缺乏维生素A的下降30%~40%。
(4)对生殖的影响 维生素A与生殖的关系是与其对生殖器官上皮的影响有关。动物实险表明,雌性大鼠由于缺乏维生素A致输卵管上皮细胞发育不良而出现排卵障碍;雄性大鼠输精管上皮变性,睾丸重量下降,精子和精原细胞消失。此外维生素A缺乏引起活性下降的各种酶中有些是合成类固醇所必需的。
(5)防癌作用 维生素A可促进上皮细胞正常的分化,抑制癌变。维生素A可降低3,4-苯丙芘对大鼠肝、肺的致癌作用,也可抑制亚硝胺对食道的致癌作用。为此,一种维生素A类似物1,3顺视黄酸在临床上已被用于预防与上皮组织有关的癌症,如皮癌、肺癌、膀胱癌、乳腺癌等,还用于治疗急性粒细胞性白血病。
6·2·4 维生素A的缺乏症及毒性
6·2·4·1 维生素A的缺乏症
在许多工业较不发达的地区,维生素A缺乏是一个主要的公共卫生问题。造成维生素A缺乏的原因主要是膳食中维生素A或维生素A原不足,吸收、储存和利用障碍,生理需要量增加而摄入量没有增加等。
维生素A长期不足或缺乏,首先出现暗适应能力降低及夜盲症,然后出现一系列影响上皮组织正常发育的症状,如皮肤干燥、形成鳞片并出现棘状丘疹、异常粗糙且脱屑,总称为毛囊角化过度症。上皮细胞的角化还可发生在呼吸道、消化道、泌尿生殖器官的黏膜以及眼的角膜及结膜上并出现相应的症状,如唾液腺、胃腺、汩腺等分泌减少。其中最显著的是眼部因角膜和结膜上皮的退变,泪液分泌减少而引起干眼病,患者常感眼睛干燥,怕光,流泪,发炎,疼痛,严重的引起角膜软化及溃疡,还可出现角膜皱褶及毕脱氏斑(Bitot’s spots,少儿维生素A缺乏的最重要临床诊断体征),发展下去可导致失明。据估计,每年约有50万学龄前儿童因为缺乏维生素A而致盲,多数盲童不能存活。此外,由于吸收道上皮细胞的角化和失去纤毛,可使呼吸道低抗力降低易感染,特别是儿童及老年人易引起呼吸道炎症。
6·2·4·2 维生素A的过量与毒性
由于维生素A可以在机体内储存,摄入过量的维生素A可能引起毒性反应,包括急性、慢性和致畸毒性。急性毒性是由于一次或多次连续摄入大剂量的维生素A,常常是大于成人推荐摄入量的100倍,或大于儿童推荐摄入量的20倍,其早期症状有恶心、呕吐、头痛、眩晕、视觉模糊、肌肉失调和婴和的囟门突起,当剂量极大时,可出现嗜眠、厌食、搔痒、反复呕吐等。慢性毒性比急性常见,是由于几周到几年之内反复服用维生素A,使用剂量为推荐摄入量的10倍以上,常见中毒表现有头痛、脱发、唇裂、皮肤干燥和瘙痒、长骨末端周围部分疼痛、肝脏肿大、肌肉僵硬等。胚胎吸收、流产、出生缺陷和子代永久性学习能力丧失是维生素A最严重的致畸作用,若孕妇在妊娠时期每日大剂量摄入维生素A,娩出畸形儿的相对危险度为25.6。
6·2·5 维生素A的参考摄入量(DRIs)与食物来源
采用耗竭一补充的方法研究成年人维生素A要量的结果表明,预防维生素A缺乏的最低需要量不低于300μg/d,适宜供给量为600~1000μgRE/d。我国居民膳食维生素A的RNI(μgRE/d)分别定为:0.5~3岁为400(AI),4~6岁为500,7~10岁为600,11~13岁为700,14岁以上的男性为800,14岁为上的女性为700,孕妇中后期为900,乳母为1200。维生素A的UL(μgRE/d)分别定为:4~17岁为2000,18岁以上为3000,孕妇为2400。
人体从食物中获得的维生素A主要有两类:一类是维生素A原即各种类胡萝卜素,主要存在于深绿色或红**蔬菜和水果等植物性食物中。含量较丰富的有菠菜、苜蓿、豌豆苗、红心甜薯、胡萝卜、青椒和南瓜等。另一类是来自动物性食物的维生素A,多数以酯的形式存在于动物肝脏、奶及奶制品(未脱脂)和禽蛋中。
6·3 维生素D(钙化醇,抗佝偻病维生素)
5·3·1 维生素D的理化性质
维生素D是一族A、B、C和D环结构相同但侧链不同的分子的总和,是具有胆钙化醇生物活性的一类化合物,基于结构是环戊氢烯菲环。以维生素D2和维生素D3最为常见。在阳光或紫外线的照射下,存在于大多数高级动物的表皮或皮肤组织中的前体,类因醇7-脱氢胆固醇,可经过光化学反应转化为维生素D3;维生素D2是由酵母菌或麦角中的麦角固醇经紫外线照射而产生,虽然这一种维生素也存在于自然界,但存量极微。哺乳动物对维生素D3和维生素D2的利用无差别。
维生素D为脂溶性维生素,溶于脂肪与脂肪溶剂,在中性及碱性条件下对热稳定,如在130℃加热90min,仍能保持其活性,故在日常的加工烹调过程中一般不被破坏,但光及酸能促使其异构化。维生素D的油溶液加抗氧化剂后稳定。过量辐射照射,可形成少量具毒性的化合物。
6·3·2 维生素D的吸收与代谢
维生素D每时每刻都在参与体内钙和矿物质平衡的调节,现在已知这些重要的生物学效应是由于维生素D的代谢产物所致。
人类所需维生素D从两个途径获得,即在皮肤中形成和经口从食中获得。如果将皮肤置于阳光下进行紫外线照射,在表皮和真皮中所含有的许多7-脱氢胆固醇会产生光化学反应,并形成前维生素D3,一旦前维生素D3在皮肤内形成,它将告温度缓慢地转化为维生素D3,这一过程至少要3d 才能完成。然后,维生素D结合蛋白把维生素D3从皮肤输送到循环系统。经口摄入的维生素D在胆汁的帮助下,与脂肪一起小肠吸收。
从膳食和皮肤两条途径获得的维生素D3与血浆α-球蛋白结合,60%~80%被肝脏接受,并在肝脏内经维生素D3-25羟化酶催化,第一次在第25碳处被羟化而形成25-(OH)2-D3,然后再转运至肾脏,转化为1a,25-(OH)2-D3及24R,25-(OH)2-D3。维生素D的大量生物学效应是通过其代谢产物1a,25-(OH)2-D3而发生的。
维生素D主要储存在脂肪组织中,其次是肝脏,大脑、肺、脾、骨和皮肤也有少量存在。维生素D分解代谢主要在肝脏,口服维生素D较从皮肤获得者易于分解。维生素D的主要排泄途径是通过胆汁入肠,从粪便中排出,少量(2%~4%)从尿中排出。
6·3·3 维生素D的生理功能
维生素D主要与钙和磷的代谢有关,它影响这些矿物质的吸收以及它们在骨组织内的沉积。维生素D在体内肝肾处转化为活性形式,并被动送至肠、骨和肾脏,与甲状旁腺素共同作用,维持血钙水平。当血钙水平较低时,在小肠可促进钙结合蛋白合成,从而增加钙磷吸收,也可促使钙在肾小管的重吸收,并将钙磷从骨中动员出来;当血钙过高时,促使甲状旁腺产生降钙素,阻止钙从骨中动员,以及增加钙磷从尿中排出。维生素D促使骨与软骨及牙齿的矿物化,并不断更新以维持其正常生长。此外,维生素D对防止氨基酸通过肾脏时的丢失也有重要作用,且还具有免疫调节功能,可改变机体对感染的反应。
6·3·4维生素D的缺乏症及毒性
6·3·4·1 维生素D的缺乏症
缺乏维生素D地导致肠道对钙和磷的吸收减少,肾小管对钙和磷的重吸收降低,造成骨髓和牙齿的异常矿化,继而使骨骼畸形。主要缺乏症为:
(1)佝偻病 维生素D缺乏,骨髓不能正常钙化,变软,易弯曲,畸形,同时影响神经、肌肉、造血、免疫等组织器官的功能。多见于婴细幼儿。
(2)骨软化症 易发于成人,特别是妊娠、哺乳的妇女和老年人。主要表现为骨软化,易折断。初期腰背部、腿部不定位的时好时坏的疼痛,常在活动时加剧;严重时造成骨骼脱钙,骨质疏松,有自发性、多发性骨折。
6·3·4·2维生素D的过量及毒性
人体对维生素D的耐受性因人而异,一般每日摄取量不宜超过400IU(10μG)。一些学者认为,长期短日摄入200IU(50μG)的维生素D就可导致中毒。维生素D中毒的症状包括高血钙症、高尿钙症、厌食、恶心、呕吐、口渴、多尿、皮肤瘙痒、肌肉乏力、关节疼痛等。由于钙可在软组织内(如心脏、血管、肾小管等)沉积,往往造成心脏、肾脏及大动脉钙化,引起心血管系统导常等并导致肾衰竭,这是死亡的主要原因。妊娠期和婴儿初期过多摄取维生素D,可引起出生体质量偏低,严重者可有智力发育不良及骨硬化。
但通常膳食的维生素D来源一般不会造成过量。
6·3·5 维生素D的参考摄入量(DRIS)与食物来源
维生素D的最低需要量尚难肯定,因皮肤形成维生素D3的量变化较大。维生素D需要量还与钙、磷摄入量有关。我因居民维生素D的RNI(μG/D)分别定为:婴儿~10岁为10,11~49岁为5,50岁以上及中后期孕妇和乳母为10,孕时期为5。
由于过量摄入维生素D有潜在毒性,目前普遍接受维生素D摄入量不宜超过25μG/D,我国成人和儿童维生素D的UL定为20μG/D。
经常晒太阳是人体获得充足有效的维生素D3的最好来源,特别是婴幼儿、特殊的地面下工作人员。鱼肝油是维生素D的丰富来源,含量高达8500IU/100g,其制剂可作为婴幼儿维生素D的补充剂,在防治佝偻病上有很重要的意义。动物性食品是天然维生素D的主要来源,含脂肪高的海鱼和鱼卵、动物肝脏、蛋黄、奶油等含量均较多;瘦肉、奶含量较少,故许多国家在鲜奶和婴儿配方食品中强化维生素D。
6·4维生素E
6·4·1维生素E的理化性质
维生素E又生育酚,目前自然界有8种,包括α、β、γ与δ生育酚,α、β、γ和δ三烯生育酚,它们都具有活性,其中α生育酚的生物活性最大。
维生素E是黄浅色油状液体,溶于酒精‘脂肪与脂溶剂,不溶于水,对酸、热稳定,遇碱不稳定,易发生氧化,油脂酸败可加速维生素E的破坏。
6·4·2维生素E的吸收与储存
膳食中维生素E主要由α-生育酚和γ-生育酚组成,在正常情况下,吸收率为20%~25%。由于维生素E的疏水性,它的吸收类似膳食脂肪,影响脂肪吸收的因素也影响其吸收。维生素E指在吸收前需先经胰酯酶和肠黏膜酯酶的水解,吸收方式主要是被动扩散,也可以完整的微团穿入肠黏膜细胞内而被吸收。游离的
α-生育酚和γ-生育酚一旦进入肠细胞内,即与膳食脂质消化的其他产物,以及由肠细胞产生的载脂蛋白掺入乳糜微粒,通过淋巴进入体循环。肝脏具有建迅速更新维生素E的储存功能,因而维生素E在肝脏的储存不多。脂肪组织是维生素E的一个长期储存场所,但在脂肪组织中维E积存慢,释出亦慢。肌肉是生育酚在体内储存的重要声场所。维生素E几乎只存在于脂肪细胞的脂肪滴、所有细胞膜和血循环中的脂蛋白中。
6·4·3维生素的生理功能
(1)抗氧化作用 维生素E是一种很强的抗氧化剂,在体内可保护细胞免受自由基损害。维和素E定位于细胞膜上,与超氧化物歧化酶、谷胱甘肽过氧化物酶一起构成体内抗氧化系统,保护细胞膜(包括细胞器膜)中多不饱和脂肪酸、膜的富含疏基的蛋白质成分及细胞骨架和核酸免受自由基的攻击;维生素E可以防止维生素A、维生素C和ATP的氧化,保证它们在体内有正常功能;还可保护神经系统、骨骼肌和眼视网膜等免受氧化损伤。
(2)提高运动能力、抗衰老 维生素E能保护血管,改善血流状况,增强精神活力,提高运动能力;维生素E可延长红细胞的寿命,有抑制分解代谢酶的作用;维生素E可减少褐脂质(细胞内某些成分被化分解后的沉积物)的形成,并能保护T淋巴细胞,从而保护人体免疫功能。
(3)调节体内某些物质的合成 维生素E通过嘧啶碱基参与DNA生物合成过程,且与辅酶Q的合成有关。
(4)其他 维和素E抑制含硒蛋白、非血红蛋白的含铁蛋白等的氧化;保护脱氢酶中的疏基不被氧化,或不与重金属离子发生化学反应而失去作用;维生素E在酸性环境中破坏亚硝基离子的反应较快,在胃中阻断亚硝胺生成较维生素C更有效。
6·4·4维生素E的缺乏症及毒性
维生素E广泛存在于食物中,因而较少发生由于维生素E摄入量不足而产生缺乏症。但如果膳食脂肪在肠道内的吸收发生改变时,则可造成维生素E的吸收不良,继而产生缺乏。多不饱和脂肪酸摄入过多,也可发生维生素E缺乏。表现为血液与组织中维生素E降低,红细胞脆性增加,尿中肌酸排出增多,当应用维生素E后,上述症状均可显著减退。另外,流行病学的研究结果指出,维生素E和其他抗氧化剂的摄入量较少和血浆维生素E较低,可能使患某些癌、动脉粥样硬化、白内障及其他老年退行性病变的危险性增加。
由于胎盘转运维生素E较率较低,新生儿,特别是早产儿血浆维和素E水平较低,因此,细胞膜上多不饱和脂肪酸常易遭氧化与过氧化损伤,而致新生儿易生溶血性贫血。补充维生素E可减少贫血,恢复血红蛋白正常水平。
与其他脂溶性维生素相经,维生素E的毒性比较低,但大剂量维生素E可引起短期的胃肠道不适。早产儿大量口服维生素E制剂常可使坏死性小肠结肠炎的发生率明显增加。摄入大量的维生素E可能干拢维生素A和维生素K的吸收,当每日摄入量>1200mg生育酚当量时,还可干拢维生素的代谢,从而增强了一些药物(如香豆素)的抗凝作用。
6·4·5
我国居民膳食维生素E的AI(mg α-TE/d,α-TE为α-生育酚当量)分别定为:0~1岁为3,1~4岁为4,4~7岁为5,7~11岁为7,11~14岁为10,14岁以上为(含孕妇和乳母)均为14。当多不饱和脂肪酸摄入量较多时,相应的应增加维生素E的摄入量,一般每摄入1g多不饱和脂肪酸应摄入0.4mg维生素E。维生素E的UL(mg α-TE/d,)分别定为:婴儿3,1~4岁为4,4~11岁为5,7~11岁为7,11~14岁为10,14岁以上各人群(含孕妇和乳母)为14。
食用植物油的总生育酚含量最高,可达72.37mg/100g ,谷类食物的维生素E含量也较多,为0.96mg/100g。因此,谷类食物和油脂类是维生素E的主要食物来源。其他食物如麦胚、坚果类、豆类、蛋类含量也较多,肉类、鱼类、果蔬类含量很少。
6·5 维生素B1(硫胺素,抗脚气病、抗神经炎因子)
6·5·1 维生素B1理化性质
维生素B1又称为硫胺素,是第一个以纯粹形式获得的维生素。硫胺素分子包含一个嘧啶和一个噻唑环,通过亚甲基桥连接而成。硫胺素为白色结晶,溶于水,微溶于乙醇,气味似酵母。硫胺素的商品形式是它的盐酸盐和硝酸盐,两种形式在干燥条件和酸性介质中极其稳定,不易被氧化,比较耐热,但在中性特别是碱性环境中易被氧化而失去活性。硫胺素对亚硫酸盐特别敏感,亚硫酸盐很容易将其分子裂解,使之失去活性。在一些天然食物中,含有抗硫胺素因子,如生鱼片及软体动物内脏中含有硫胺素酶,这种酶会造成硫胺素的分解破坏。曾经有报道动物长期食用生鱼片而出现维生素B1缺乏症。此外,一些蔬菜、水果如红色甘蓝、黑加仑等,以及茶和咖啡中含有的多羟基酚类物质,可以通过氧化还原反应过程使硫胺素失活。
6·5·2 维生素B1生理功能
硫胺素的吸收主要在空肠,吸收方式为主动转运和被动扩散。进入细胞后的硫胺素即被磷酸化而成为磷酸酯。硫胺素的磷酸酯形式包括硫胺素一磷酸(TMP)、硫胺素焦磷酸(TPP)以及硫胺素三磷到(TTP)。在动物组织中游离的硫胺素和其磷酸化形式均以不同数量存在,以TPP最为丰富,约占总硫胺素的80%,TTP占5%~10%,其余为TMP和硫胺素。在动物体内,这4种形式都可以互相转化。成人体内有25~30mg硫胺素,广泛分布于各种组织中、以肝脏、肾脏、心脏为最高。
(1)辅酶功能 TPP是硫胺素的主要辅酶形式,在体内参与两个重要的反应,即α-酮酸的氧化脱羧反应和磷酸戊糖途径的转酮醇作用。前者是发生在线粒体中的生物氧化过程的关键环节,TPP作为丙酮酸脱氢酶和α-酮戊二酸脱氢酶的辅酶,参与丙酮酸和α-酮戊二酸的氧化脱羧作用。从葡萄糖、脂肪酸、支链氨基酸衍生来的丙酮酸和α-酮戊二酸需经氧化脱羧产生乙酰CoA和琥珀酰CoA,才能进入榨菜檬酸循环底氧化,并产生维持生命必需的能量,这是能量代谢中最复杂和最重要的反应之一,因此,缺乏硫胺素时,会对机体造成广泛的损伤。除TPP外,也需要下列辅助因素:含有泛酸的辅酶A、含有尼克酸的烟酰胺腺嘌呤二核苷酸(NAD)、镁离子和硫辛酸。
TPP也与转酮醇作用有关,这是磷酸戊糖途径的一种重要的反应,通过胞浆酶转酮醇酶进催化反应,把2或3碳部分转移而发生3、4、5、6、7-碳糖类的可逆的互交。转酮醇作用不是碳水化合物代谢中主要糖酵解循环的一个直接途径,但它是核酸合成中的戊糖以及脂肪酸合成中的NADPH的一个重要来源。因在硫胺素缺乏时,转酮醇酶的活性会很早下降,所以测定红细胞中转酮醇酶活性可用来作为评价硫胺素营养状况的一种可靠方法。
(2)非辅酶功能 硫胺素在维持神经、肌肉特别是心肌的正常功能以及维持正常食欲、胃肠道的蠕动和消化液的分泌等,都有明显的作用。这种功能属于非辅酶功能,可能与TPP直接激活神经细胞的氯化物通道,通过控制有功能的通道的数量而控制神经传导的启动。
6·5·3 维生素B1缺乏症
维生素B1摄入不足和酒精中毒是硫胺素缺乏的最常见的原因。脚气病(beriberi)是人及多种动物硫胺素摄入不足的最终后果。发病早期病人可有体弱疲倦、烦躁、头痛、食欲振及其他胃肠症状,持续缺乏时则会出现心血管系统和神经系统症状。心血管系统的表现包括心脏肥大和扩张(尤其是右心室)、心动过速、呼吸窘迫以及腿部水肿;神经系统症状有腱反射亢进、多发性神经炎,其肌肉软弱无力和疼痛,并有抽搐,“灼足综合症”常发生于多发性神经炎的早期。硫胺素缺乏严重时,神经和心血管系统症状可能会同时出现,还可致命。在发达国家硫胺素的亚临床缺乏较普遍,症状不明显,主要有疲倦、头痛、劳动能力降低等。
在人的中枢神经系统方面,硫胺缺乏可能引起韦尼克(Wernicke)脑病和科尔萨科夫(Korsakoff)精神病,这两种情况是酒精中毒者的典型体征。韦尼克脑病出现的特点是精神错乱、共济失调、眼肌麻痹、精神病及昏迷等;科尔萨科夫精神病是一种遗忘性精神病
维生素是属于维持猪正常生理机能所必需的低分子有机化合物。现已发现的维生素有三四十种,分为脂溶性和水溶性两大类。
脂溶性维生素:这类维生素只能溶解于脂肪中,不溶于水中,所以它的存在与吸收都与脂肪有关,它贮存于脂肪中。脂溶性维生素主要有维生素A、维生素D、维生素E、维生素K等。这类维生素能在体内贮存,短期供应不足对猪的生长和健康不会造成不良影响。
水溶性维生素:这类维生素只能溶解于水。主要包括维生素B族和维生素C等。水溶性维生素很少或几乎不在机体内贮存。因此,短时间的缺乏或不足就会影响机体内一些酶的活性,阻抑相应的代谢过程,降低猪的生产性能或引起维生素缺乏病症。
维生素是人体代谢中必不可少的有机化合物。人体有如一座极为复杂的化工厂,不断地进行着各种生化反应。其反应与
酶的催化作用有密切关系。酶要产生活性,必须有辅酶参加。已知许多维生素是酶的辅酶或者是辅酶的组成分子。
因此,维生素是维持和调节机体正常代谢的重要物质。可以认为,维生素是以“生物活性物质”的形式,存在于人体组织中。
维生素大部分不能在人体内合成,或者合成量不足,不能满足人体的需要。因而,必须从食物中摄取。食物中维生素的含量
较少,人体的需要量也不多,但却是绝不可少的物质。膳食中如缺乏维生素,就会引起人体代谢紊乱,以致发生维生素缺乏症。
如缺乏维生素A会出现夜盲症、干眼病和皮肤干燥;
缺乏维生素D可患佝偻病;
缺乏维生素B1可得脚气病;
缺乏维生素B2可患唇炎、口角炎、舌炎和阴囊炎;
缺乏PP可患癞皮病;
缺乏维生素B12可患恶性贫血;
缺乏维生素C可患坏血病。
维生素是个庞大的家族,就目前所知的维生素就有几十种,大致可分为(脂溶性)和(水溶性)两大类。
前者包括维生素A、D、E、K,后一类包括维生素B族和维生素C,以及许多“类维生素”。
现在医学上发现的维生素主要有:
脂溶性维生素
维生素A: 维持正常视力,预防夜盲症;维持上皮细胞组织健康;促进生长发育;增加对传染病的抵抗力;
预防和治疗干眼病。
维生素D: 调节人体内钙和磷的代谢,促进吸收利用,促进骨骼成长。
维生素E: 维持正常的生殖能力和肌肉正常代谢;维持中枢神经和血管系统的完整。
维生素K: 止血。它不但是凝血酶原的主要成分,而且还能促使肝脏制造凝血酶原。小儿维生素K缺乏症
水溶性维生素
维生素B1:保持循环、消化、神经和肌内正常功能;调整胃肠道的功能;构成脱羧酶的辅酶,参加糖的代谢;能预防脚气病。
维生素B2:又叫核黄素。核典素是体内许多重要辅酶类的组成成分,这些酶能在体内物质代谢过程中传递氢,它还是蛋白质、
糖、脂肪酸代谢和能量利用与组成所必需的物质。能促进生长发育,保护眼睛、皮肤的健康。
泛酸(维生素B5): 抗应激、抗寒冷、抗感染、防止某些抗生素的毒性,消除术后腹胀。
维生素B6: 在蛋白质代谢中起重要作用。治疗神经衰弱、眩晕、动脉粥样硬化等。
维生素B12。抗脂肪肝,促进维生素A在肝中的贮存;促进细胞发育成熟和机体代谢;治疗恶性贫血。
维生素B13(乳酸清)。
维生素B15(潘氨酸)。主要用于抗脂肪肝,提高组织的氧气代谢率。有时用来治疗冠心病和慢性酒精中毒。
维生素B17。剧毒。有人认为有控制及预防癌症的作用。对氨基苯甲酸。在维生素B族中属于最新发现的维生素之一。
在人体内可合成。
肌醇: 维生素B族中的一种,和胆碱一样是亲脂肪性的维生素。
维生素C:连接骨骼、牙齿、结缔组织结构;对毛细血管壁的各个细胞间有粘合功能;增加抗体,增强抵抗力;促进红细胞成熟。
维生素P:维生素PP(烟酸)。在细胞生理氧化过程中起传递氢作用,具有防治癞皮病的功效。
叶酸(维生素M):抗贫血;维护细胞的正常生长和免疫系统的功能。
维生素T:帮助血液的凝固和血小板的形成。
维生素U:治疗溃疡上有重要的作用。
维生素是人体营养、生长所需的有机化合物。机体如果缺乏维生素,就会出现某种疾病。因此有些人认为维生素是营养素,摄
入是“多多益善”。人需要维生素越多越好吗答案是否定的。合理营养的关键在于“适度”。过多摄入某些维生素,对身体不
仅无益反而有害。
我们知道,维生素大致可分为水溶性(维生素B、C)和脂溶性(维生素A、D、K等)两大类。水溶性类的维生素多余部分一般可随尿
液排出体外,脂溶性类的维生素A或D,多余者不能排出体外。这样就给人们一个印象以为水溶性维生素食多了无害,有人主张
每日口服维生素C3—5克以达到保健的目的。其实这是有害的,实验证实,长期日服维生素C1克以上时,可引起草酸尿、高尿酸
血症、高外血症。有的人全身可出现皮疹、浮肿、血压下降、恶心。在脂溶性维生素中,以维生素A和维生素D服用量过大而引起
的中毒最为常见。维生素A过剩时,将引起不眠、气喘、眩晕、脱发、恶心、腹泻等症;维生素D过剩时,可引起食欲不振,倦怠、
便秘、体重下降及低烧等。
正常人每日需要维生素C50—100毫克,维生素A2500—3000国际单位,维生素D300—400国际单位。
从营养上讲,所谓维生素应该是人体不能合成(或合成数量不能满足需要)而在人体正常代谢过程和调节生理功能所不可缺少的
一类物质。它们是必须由食物供给的营养素。因此缺乏时就会出现某种典型的临床症状。截止目前为止并未发现因缺乏苦杏仁
甙而患任何缺乏症的,因此这两种物质根本不能称为维生素。
维生素B15和维生素B17是国外一些营养学者提出的有益于人体健康的食物成分,并命之为维生素,但至今均未被世界学者们
所公认。
在近来的研究表明,维生素还有着一些特殊的功用,如泛酸的情绪调节作用,叶酸和维生素B12的降低DNA损耗作用,叶酸加B6
有益心血管等。
对于维生素补充,应该从饮食和维生素制剂两方面来补充。水果蔬菜的维生素含量高,但由于每种蔬菜和水果的维生素含量
都不同,未必能够在各方面均衡补充维生素,蔬菜水果在加工、烹调中维生素也有损失,维生素制剂就能够起到均衡的作用。
但维生素制剂不容易吸收,又非天然绿色,因此还是以水果蔬菜的补充为主。
摄取维生素时的注意事项||对维生素的错误认识||常见维生素制剂||维生素辅助治疗||维生素与儿童健康 相关参考:维生素
和健康专栏(专栏作者:林凡顺)胡萝卜素
参考资料:
维生素怎样发挥作用
如果我们把人类的身体设想为汽车的引擎,维生素就有如活塞一样。这种惊人的物质在食物中含量甚微,对人体具有什么作用呢?
● 维生素经由酶系统使人体的代谢正常化。只要欠缺一种维生素,就可能危及全身。
维生素是人体酶系统的构成要素。这个酶系统就有如活塞的点火装置一样--调整身体的状况,使各部分有效的运作,促进人体的
正常代谢,使全身正常化。
若与蛋白质、脂肪、碳水化合物等其他营养素比较的话,维生素的摄取量(即便是因治疗的目的而大量摄取也一样)是非常微小
的。但是只要欠缺任何一种维生素,便可能会导致全身陷入危险的状态。
造成维生素缺乏的主要原因有:
①膳食中含量不足。可因贫困、膳食单调、偏食等使摄入膳食中维生素的量不能满足机体的需求;
②体内吸收障碍。如肠蠕动加快,吸收面积减少,长期腹泻等使维生素的吸收、储存减少;
③排出增多。可因授乳、大量出汗、长期大量使用利尿剂等使之排出增多;
④因药物等作用使维生素在体内加速破坏;
⑤生理和病理需要量增多;
⑥食物加工烹调不合理使维生素大量破坏或丢失。
预防维生素缺乏的措施:
①提供平衡膳食;
②根据人体的生理、病理情况及时调整维生素供给量;
③及时治疗影响维生素吸收的肠道疾病;
④食物加工烹调要合理,尽量减少维生素的损失。
脂溶性维生素包括A、D、E、K四种,在食物中与脂类共同存在,在肠道吸收时也与脂类吸收有关,排泄效率低,故摄入过多时,
可在体内蓄积,产生有害作用,甚至发生中毒。水溶性维生素包括B族维生素(B1、B2、B6、B12、PP等)的抗坏血酸(VC)。
水溶性维生素的特点:
①溶于水,不溶于脂肪及有机溶剂;
②容易从尿中排出体外,且排出效率高,故大量食入一般不会产生蓄积和毒害作用;
③绝大多数以辅酶或辅基形式参加各种酶系统工作,在中间代谢的许多环节中都起着极重要的作用;
④其体内营养水平多数都可在血液和尿中反映出来。
一、维生素A(VA)和维生素A原(类胡萝卜素)
维生素A(retinol)又名视黄醇,与类胡萝卜素一样对热、酸、碱稳定,一般加工防烹调方法不会引起破坏,但易被氧化,
高温与紫外线可促进这种氧化破坏,若与磷脂、VE和VC及其他抗氧化剂并存则较为稳定。
(一)生理功能
1参与视网膜视紫质的合成与再生,维持正常暗适应能力,维持正常视觉。
2参与上皮细胞与粘膜细胞中糖蛋白的生物合成,维持上皮细胞的正常结构和功能。
3促进蛋白质的生物合成和骨细胞的分化,促进机体的生长和骨骼的发育。
4免疫球蛋白也是糖蛋白,其合成与VA有关,故有增加机体抗感染的作用。
5VA可促进上皮细胞的正常分化并控制其恶变,从而有防癌作用。
(二)VA缺乏病
由于VA和VA原摄入不足所引起的营养缺乏病,临床上首先出现暗适应能力降低,进一步发展可形成夜盲症。
皮肤基底细胞增生和过度角化,特别是毛囊口角化为毛囊丘疹(多发生在四肢伸肌表面、肩部、颈部、背部,臀部的毛囊周围);
汗腺、皮脂腺萎缩、皮肤干燥、毛发干枯脱落;结膜角化、泪腺分泌减少,形成干眼病,进一步发展可出现角膜消溃疡、穿孔、
失明、还可出现结膜皱折和毕脱斑;骨骼发育受阻、免疫和生殖功能下降。
据WHO报道,因VA缺乏,全世界每年有50万名学龄前儿童患有活动性角膜溃疡,600万人患干眼症,这是影响视力和导致失明的
重要原因。
我国人民膳食中动物性食品摄入少,主要由蔬菜中摄取β-胡萝卜素(β-carotene)故轻度VA缺乏还是相当广泛的,应当加强防
制工作。
(三)VA过多症
VA进入机体后排泄效率不高,长期过量摄入可在体内蓄积,引起VA过多症。成年人长期每天摄入15000μg视黄醇当量,即可出现
中毒症 状,多数因过量摄入VA制剂或食入过冬狗或狼的肝脏所致。主要症状为厌食、过度激惹、长骨末端外周疼痛、肢体活动
受限、头发稀疏、 肝肿大、肌肉僵硬、皮肤搔痒、头痛、头晕等。及时停止食用,症状可很快消失。
成人一次摄入VA99000~33000μg视黄醇当量,儿童一次超过99000μg视黄醇当量,可发生VA急性中毒。成人于6~8小时后出现
嗜睡或 过度兴奋、头痛、呕吐、颅内压增高,12~30小时后皮肤红肿变厚,继之脱皮(以手、脚掌最为明显);婴幼儿急性中
毒以颅内压增 高为其主要特征,出现前囱饱满、恶心、呕吐、眼底水肿,脑脊液压力增高,血清VA含量剧增。
(四)食物来源
天然VA只存在于动物体内。动物的肝脏、鱼肝油、奶类、蛋类及鱼卵是VA的最好来源。VA原(VA的前体)类胡萝卜素,广泛分布
于植物性食品中,其中最重要的是β-胡萝卜素。红色、橙色、深绿色植物性食物中含有丰富的β-胡萝卜素,如胡萝卜、红心甜薯、
菠菜、苋菜、杏、芒果等。理论上1molβ-胡萝卜素在体内可分解成2molVA,但由于胡萝卜素有吸收利用率远低于VA,实验证明,
就其生理活性而言,6μgβ-胡萝卜素才能相当于1μgVA。β-胡萝卜素是我国人民膳食中VA的主要来源。
(五)供给量
婴幼儿与儿童的不同年龄段,供给量有所不同(200~750μg视黄醇当量),从13岁少年开始至成年老年皆为800μg视黄醇当量。
孕妇1000μg,乳母1200μg视黄醇当量。
1μg胡萝卜素=0167μg视黄醇当量。以往VA的量常用国际单位(IU)表示。1 IUVA=033μgVA=033μg视黄醇当量。
当从膳食中既摄入VA又食入β-胡萝卜素时,应全部折合成μg视黄醇当量,即:
视黄醇当量(μg)=VA(μg)+0167×β-胡萝卜素(μg)。
(六)人体VA营养状况评定
评定人体内VA营养状况常用指标有:
①测定血清VA含量。成人血清VA正常含量为300~900μg视黄醇当量/L,低于120μg为缺乏,但因血清VA含量高低受许多因素影响,
故应对具体情况作具体分析;
②视觉暗适应功能测定。VA缺乏者暗适应能力比正常人差;
③血浆中视黄醇蛋白测定。国外报道其含量与血浆VA含量有正相关趋势。
二、维生素D(VD)
VD是所有具有胆钙化醇生物活性的类固醇统称。其中VD2(钙化醇,calciferol)与VD3(胆钙醇,cholecalciferol)是最重
要的VD。VD2与VD3结构相似、功能相同,皆为脂溶性维生素,对热、氧、酸、碱均较稳定,主要区别于两者的来源不同,VD2来源
于植物,大多数植物中含有微量的麦角固醇,植物叶曝露于日光后形成VD2(称麦角钙化醇或钙化醇),VD3(又称胆钙固醇或胆
钙醇)来源于动物,人与动物皮肤中的7-脱氢胆固醇经紫外线照射后即可转变成VD3,然后运往肝、肾转化为具有生物活性的形式,
再发挥其重要生理功能。
(一)生理功能
VD对骨骼形成极为重要,其主要功能是调节钙和磷代谢,促进小肠对钙和磷的吸收与利用,构成健全的骨骼与牙齿。
(二)VD缺乏病
VD与机体内钙、磷代谢密切相关,故当VD缺乏时,儿童发生佝偻病,成人出现骨软化症和骨质疏松症。佝偻病常在婴幼儿中发生,
因骨骼的软骨连接处及骨骼部位增大,临床上可见到方颅、肋骨串珠、鸡胸;由于骨质软化,承受较大压力的骨骼部分发生弯曲
变形,如脊柱弯曲,下肢弯曲,还可发生囟门闭合迟缓,胸腹之间形成哈里逊沟。若成人缺乏VD,可使成熟的骨骼脱钙而发生骨
质软化症和骨质疏松症,妊娠与授乳期妇女最易发生,好发部位为骨盆与下肢,再逐渐波及到脊柱和其他部位。
(三)VD过多症
VD可以在体内蓄积,过多摄入可以引起VD过多症。成人每日摄入2500μg,儿童每日摄入500~1250μg,数周后即可发生中毒。
表现为头痛、厌食、恶心、口渴、多尿、低热、嗜睡、血清钙、磷增加,软组织钙化,可出现肾功能衰竭、高血压等症状。
停止食用,数周后可恢复正常。
(四)食物来源
VD3含量最丰富的食物为鱼肝油,动物肝脏和蛋黄,牛奶与其他食物中VD3的含量较少。VD2来自植物性食品,一般说来,人只要
能经常接触阳光,在一般膳食条件下,不会造成VD缺乏。以牛奶为主食的婴儿,应适当补充鱼肝油,并经常接受日光照晒,有
利于生长发育。
(五)供给量
成年人每日供应5μg,孕妇、乳母、儿童与青少年及老年人均为10μg。
(六)营养状况评定
目前多用高效液相色谱法测定血浆中的25-OH-D3,作为鉴定VD3营养状况的指标,结果准确可靠。
三、维生素E(VE)
VE是所有具有α-生育酚生物活性的色酮衍生物的统称,其中以α-生育酚的活性最高。易溶于脂肪溶剂,对热与酸稳定,对碱
敏感,可缓慢地被氧化破坏。
(一)生理功能
VE具有很强的抗氧化作用,能阻止不饱和脂肪酸受到过氧化作用的损伤,从而维持着不饱和脂肪酸较多的细胞膜的完整性和正
常功能;由于预防了脂质过氧化,从而消除了体内其他成分受到脂质过氧化物的损害。因此,具有延缓衰老、预防大细胞性溶
血性贫血作用;还与性器官和胚胎发育有关,动物试验表明,大鼠缺乏VE,将引起雌、雄动物生殖系统的损害,使生殖上皮发
生不可逆变化,雄性可致精子停止形成和睾丸退化,雌性可致胚胎死亡。临床上常用来治疗不孕症、习惯性流产。
(二)食物来源
各种植物油(麦胚油、棉籽油、玉米油、花生油、芝麻油)、谷物的胚芽、许多绿色植物、肉、奶油、奶、蛋等都是VE良好或
较好的来源。
(三)供给量
儿童为3~8mg,少年与成年人为10mg,孕妇、乳母与老人为12mg。
(四)营养水平评定
1判定血清中α-生育酚的含量,这是直接反映体内VE储存量是否充足的一个指标,一般认为低于5mg/L为营养状况不良。
2红细胞体外试验,体内缺乏VE者,其体外红细胞对H2O2引起的溶血比正常人敏感。
四、维生素B1(VB1)
VB1(硫胺素,thiamine)在高温时,特别是在高温碱性溶液中,非常容易破坏,并易受紫外线破坏,在酸性溶液中,稳定性
较好,甚至加热时也是稳定的。
(一)生理功能
VB1是脱羧辅酶的主要成分,参与碳水化物代谢中丙酮酸及α-酮戊二酸的氧化脱羧作用;能抑制胆碱脂酶的活性,维持胃肠
道的正常蠕动和消化腺的分泌。
(二)VB1缺乏症
VB1缺少时,神经组织中的碳水化物代谢首先受到阻碍,致使丙酮酸堆积在神经组织中,引起多发性神经炎和脚气病(beriberi),
又称脚气病多见于以大米为主食的地区。在东南亚地区特别是菲律宾、越南、泰国、缅甸等国尤为多见。我国建国后已不多见,
但近年来由于生活水平提高,食用精白米增多,在某些地区患病率又有回升。还可因酗酒、各种胃肠道疾病使之吸收过少,
结核、甲亢等消耗性疾病使之相对不足而引起发病。
由于饮食不足引起者,一般在摄取3个月低VB1饮食后出现症状。早期表现为疲乏无力,肌肉酸痛,食欲下降,体重减轻。
继之出现典型的症状:上升性对称性周围神经炎,先发生在下肢,呈袜套状分布;感觉异常、肌肉无力、心动过速、心前区
疼痛;严重者表现为心力衰竭,水肿。临床上可分为四型:
①干型,以周围神经炎表现为主;
②湿型,以水肿和浆液性渗出为主;
③暴发型,以急性心血管系统表现为主,同时伴有膈神经和喉返神经瘫痪;
④混合型,同时有上述两型以上表现者。
(三)食物来源
VB1含量丰富的食物有粮谷类、豆类、干果、酵母、硬壳果类,尤其在粮谷类的表皮部分含量更高,故碾磨精度不宜过度。
动物内脏、蛋类及绿叶菜中含量也较高,芹菜叶、莴笋叶中含量也较丰富,应当充分利用。土豆中虽含量不高,但以土豆
为主食的地区,也是VB1的主要来源。某些鱼类及软体动物体内,含有硫胺素酶,生吃可以造成其他食物中VB1的损失,故
“生吃鱼、活吃虾”的说法,既不卫生,也不科学。
(四)供给量
VB1的需要量与机体热能总摄入量成正比,故VB1的供给量以每42MJ(1000kcal)热能供给多少来表示,据此,我国的推荐
VB1供给量为05mg/42MJ。
(五)营养水平评定
1.负荷试验 被测者于清晨口服VB15mg,然后收集4小时以内尿液,测定其中VB1含量:<100μg为营养缺乏,100~200μg为
不足,>200μg为正常,>400μg为充裕。
2.空腹一次尿液中VB1和肌酐含量测定 二者比值<27为不足,27~65为低下,66~129为适宜,≥130为过高。
3.红细胞转羟乙醛酶活力测定 这是测定VB1营养状况的特异指标,若TPP(硫胺素焦磷酸酯)效应>16%即表示VB1缺乏。
五、维生素B2(VB2)
VB2(核黄素,riboflavin)为橙**晶体,280℃熔化并分解,在中性和酸溶液中对热稳定,在碱性条件下易分解破坏。游离
VB2对光敏感,特别是紫外光。
(一)生理功能
VB2是机体各种黄素酶的辅酶部分,在生物氧化过程中广泛地起着递氢作用;参与机体内三大生热营养素的代谢过程,与热能
代谢直接相关。
(二)VB2缺乏症(riboflavin deficiency)
机体缺乏VB2则出现能量和物质代谢的紊乱,表现在外生殖器、舌、唇、口角的综合征。据我国两次营养调查显示,居民平均
摄入量只有供给量标准的1/2。目前我国人民食用动物性食品较少,易造成VB2缺乏。临床表现为:
①口角炎;②唇炎;③舌炎;④睑缘炎;⑤阴囊炎;⑥脂溢性皮炎。
(三)食物来源
动物性食物含VB2较多,尤以肝、心、肾中丰富,奶、蛋类食品中含量也不少;植物性食品除绿色蔬菜和豆类外一般含量都不高。
(四)供给量
与VB1相同,05mg/42MJ。
(五)营养水平评定
1.测定细胞中VB2含量 这是评定VB2营养水平的良好指标,含量<140μg/L为缺乏,>200μg/L为良好。
2.负荷试验 口服5mgVB2后,4小时尿液中排出VB2量<350μg为不足。
3.VB2肌酐比值(μg/g)<27为不足,27~79为低下,80~269为适宜,>270为充裕。
4.谷胱甘肽还原酶活性测定 酶还原活性系数(AC)>12表示组织中VB2不足。
六、尼克酸(VPP)
尼克酸(nicotinic acid)亦称烟酸,在生物组织中,尼克酰胺是主要的存在形式,它是尼克酸(VPP)具有生物活性的衍生物,
可以水解为VPP,两者均为溶于水的较稳定的白色结晶,一般将VPP称为抗癞皮病维生素,VPP在普通烹调温度中非常稳定,在酸
性或碱性溶液中也不会有很多损失。
(一)生理功能
VPP是构成辅酶I和辅酶Ⅱ的重要成分,二者均为脱氢酶的辅酶,在生物氧化过程中,起到传递氢原子的作用,如果没有VPP,人
体就不能利用碳水化物、脂肪和蛋白质来产生能量,也无法合成蛋白质和脂肪;对维持皮肤、神经和消化系统正常功能起着重要
作用;还有扩张血管作用。
(二)VPP缺乏病(又称癞皮病,糙皮病)
VPP缺乏病(pellagra)多发生在以玉米为主食的地区,过去,相当一段时间内新疆南部居民以玉米为主食,又无加碱食用的习惯,
副食品供应不足,故发生过癞皮病流行,部分地区居民患病率高达50%。经长期防治,加之生活水平的提高,目前此病已基本得到
控制。
其典型症状为皮炎(dermatitis)、腹泻(diarrhea)及痴呆(demantia)即所谓“三D”症。早期常有食欲不振、消化不良、腹
泻、失眠、头痛、无力、体重减轻等现象。继之于皮肤裸露部位出现对称性皮炎,红、痒、皮肤呈暗褐色,有色素沉着,皮肤粗糙,
有明显浮肿,可伴有疱疹、溃疡与感染。消化道与舌部也有炎症,舌呈猩红色,有溃疡,出现恶心、呕吐、腹泻等症状。神经系统
除早期症状外,还有肌肉震颤,腱反射过敏或消失,可有烦躁、焦虑、抑郁、健忘、少数病人可有精神失常。其他症状有女性阴道
炎、月经不调、男性排尿时有烧灼感、性欲减退等。
(三)食物来源
富含VPP的食物为动物肝脏、酵母、花生、全谷、豆类及肉类含量较高;玉米中VPP含量不算少,但为结合型的,不能直接被人体
吸收利用。因此,为了预防癞皮病,应用碱处理玉米(如墨西哥用石灰处理玉米,我国新疆在防治癞皮病过程中推广玉米加碱食用)
可释放出大量游离型VPP,在预防癞皮病中收到了良好的效果。同时应当在膳食中增加豆类、大米和小麦粉的比例,降低玉米的摄
入量。
另外,体内所需的VPP一部分可由色氨酸转换而来,约60mg色氨酸可转换为1mgVPP。
(四)供给量
不仅与热能需要量成正比,而且为VB1、VB2供给量的10倍,推荐供给量为5mg/42MJ。
(五)营养水平评定
1.测定VPP代谢产物排出量 从尿中排出的形式主要为N’-甲基尼克酰胺(N’-Me)和2-吡啶酮-甲基尼克酰胺(2-吡啶酮),
二者排出的总量>5mg为正常,若N’-Me为05~08mg,2-吡啶酮<1mg为缺乏,并很快出现临床症状。国外用2-吡啶酮/N’
–Me比值来评定VPP的营养水平,比值>13为正常,<1为缺乏。
2.给受检者以标准膳食,此膳食提供VPP10mg和色氨酸1000mg,收集24小时尿液,测定尿中N’-Me和2-吡啶酮含量,营养水平较
好者两种代谢产物的总量为70~37mg,癞皮病患者其总量<3mg。
七、维生素C(抗坏血酸,VC)
VC(ascorbic acid)为一种酸性多羟化合物,易溶于水,在干燥及无光线条件下比较稳定。很容易被氧化,加热或暴露于空气中、
碱性溶液及金属离子(Cu2+,Fe3+)都能加速其氧化。
(一)生理功能
参与体内氧化还原过程,维持组织细胞的正常能量代谢和调节细胞内氧化还原电位;促进体内胶原合成;将血浆运铁蛋白中三价铁
还原为二价铁,促进铁的吸收;增加机体的抗病能力,促进伤口愈合;阻断亚硝胺在体内形成,具有防癌和抗癌作用;大量VC还可
促进心肌利用葡萄糖和心肌糖原的合成。
(二)VC缺乏病
人类缺乏VC可引起坏血病,表现为毛细血管脆性增加,牙龈肿胀与出血,牙齿松动、脱落、皮肤出现瘀血点与瘀斑,关节出血可形
成血肿,鼻衄,便血,月经过多。还能影响骨骼正常钙化,出现伤口愈合不良,抵抗力低下,肿瘤扩散等。我国北方地区新鲜水果
蔬菜比南方少,故VC缺乏病较之南方更为多见。
(三)食物来源
VC主要来源于新鲜蔬菜和水果,水果中以酸枣、山楂、柑桔、草莓、野蔷薇果、弥猴桃等含量高;蔬菜中以辣椒含量最多,其他蔬
菜也含有较多的VC,蔬菜中的叶部比茎部含量高,新叶比老叶高,有光合作用的叶部含量最高。干的豆类及种籽不含VC,但当豆或
种籽发芽后则可产生VC。
(四)供给量
从出生至12岁依年龄不同为30~50mg,少年、成年、老年皆为60mg,孕妇80mg,乳母100mg。
(五)营养水平评定
1.负荷试验 口服500mgVC后,4小时尿液中排出量>3mg为正常,1~3mg为不足,<1mg为缺乏。
2.测定白细胞中VC的含量<2mg/100g为营养不足。
选A。泛酸由一分子β-丙氨酸与一分子泛解酸缩合而成,可用来构成辅酶A。辅酶A是体内最重要的酰基载体,脂肪酸的氧化降解,氨基酸的碳架氧化,以及三羧酸循环等重要的分解代谢过程都需要辅酶A参与,脂肪酸、胆固醇、磷脂和乙酰胆碱的合成也离不开辅酶A。泛酸还可构成酰基载体蛋白(ACP),它是脂肪酸合成的中间产物载体。
维生素对人体起着自关重要的作用 维生素,又称维他命,是一系列低分子有机化合物的统称。它们是生物体所需要的微量营养成分,而一般又无法自己生产,需要通过饮食等手段获得。
维生素不能像糖类、蛋白质及脂肪那样可以产生能量,组成细胞,但是它们对生物体的新陈代谢起调节作用。缺乏维生素会导致严重的健康问题。目前的研究表明,人类至少需要13种维生素。
不同的维生素,化学本质不同。VA是视黄醇;VB1是硫胺素,VB2是核黄素;VB6是吡哆醛,VD为醇类;VE为生育酚;VK是醌类;VC是抗坏血酸。
维生素缺乏或过量
人体会储藏脂溶性维生素,所以摄入过量会积存在身体特别是肝脏中,有中毒危险。水溶性维生素会通过肾脏排泄,相对安全,但是也不可摄入过量,因为有可能超量的维生素会在体内发生其他生物化学反应。
通常从食物中正常摄取维生素不会存在过量的问题,但是食用过多维生素药品就有可能发生危险。
一般人体所需维生素量较少,只要注意平衡膳食一般不会导致维生素缺乏。缺乏维生素不会致死,但是由于新陈代谢紊乱会导致很多病征:
维生素A ——夜盲症、干眼症、视神经萎缩等;
维生素B1 ——神经炎、脚气病、魏尼凯氏失语症等;
维生素B2 ——脂溢性皮炎、口腔炎等;
维生素B3 ——失眠、口腔溃疡、癞皮病等;
维生素B6 ——肌肉痉挛、过敏性湿疹等;
维生素B9 ——恶性贫血;
维生素B12——恶性贫血;
维生素C ——坏血病;
维生素D ——软骨病(佝偻病);
维生素E ——不育症、习惯性流产等;
维生素K ——凝血酶缺乏,不易止血
一旦患有维生素缺乏病征,需要在医生指导下补充维生素药品或服用富含维生素的食品。但是维生素吃多了也会有不好的作用补充维生素应谨慎
维生素是人体必需的营养素,它只能由食物或其制剂补充,参与机体组织代谢过程,构成代谢所必需的辅助因子。目前,在经济不发达地区尚可见到因摄入不足引起的维生素缺乏症,而在绝大多数地区已很少见,即便有少数呈现某种维生素缺乏症者,也大多与生活习惯不良有关,如偏食、长期饮酒、吸烟等;或者是与某些慢性消耗性疾病,如慢性腹泻、胃肠功能紊乱及消化吸收不良综合征等有关。此外,还有一些特殊情况,如儿童生长发育前后两个快速期,妇女妊娠阶段等容易发生维生素缺乏症。在这些情况下,可在医生指导下适当补充所缺乏的某种维生素。如果没有上述情况, 只要饮食正常,并注意到各种营养素的合理搭配,绝大多数人是无需额外补充维生素的。
维生素对人体健康有益,但过量会因为排泄不全,在体内蓄积而引起中毒。例如,维生素过量,其慢性中毒表现为情绪变化、头痛、皮肤干燥脱屑、红斑样皮炎、毛发脱落、齿龈炎、口腔炎及淋巴结肿大等;急性中毒则表现为嗜睡、呆滞、烦躁、严重头痛、呕吐、视乳头水肿及炎小时全身皮肤脱屑等。又如,维生素过量中毒,可出现肌无力、衰弱、乏力、头痛、恶心、呕吐、腹泻及肾功能损害、肾石病等诸多症状。由此可见,维生素的补充绝不是多多益善,盲目滥用的危害极大。
近年来,美国流行“维生素补充热”。据美国国立卫生统计中心。据年的调查表明,在美国约/的成年人服用自行购买的维生素,女性比例高于男性。儿童服用各种维生素的比例更高,可占到儿童总数的童%。这种“维生素补充热”的后果是使医院里收治因过多服用维生素而致中毒者的人数呈不断上升趋势。
在我国虽未开展这一方面的调查分析,但就现实状况来看,无论从人们的认识,还是商业化的操作及某些广告夸大其词的宣传,都潜在一股“维生素补充热”暗流。如果这股暗流持续发展下去,必然会使服用过多维生素造成中毒的患者增多,使得本来是有益的营养素变成了危害健康的毒性物质,对这种人为滥用的结果,必须给予高度警惕和重视,杜绝盲目滥用。
吃维生素有说法
人体每天从食物中摄取维生素的量甚微,仅为几毫克甚至千分之几毫克就够了,如果人为地长期服用过多的维生素,反而会影响人体的新陈代谢,出现一些后遗症。因此,维生素并非多多益善。
维生素对维护人体的健康极为重要,但并非越多越好。人们应当纠正对应用维生素的错误认识,走出服用维生素的误区。
维生素是人体营养的重要来源,与人体健康关系密切,但并非可以无限量地服用。水溶性维生素如维生素C、B能够随尿液排出体外,但在排泄之前,它们要经过人的肌体,服用过量则有损健康。脂溶性维生素A、D、E、K等容易沉淀在脂肪组织和肝脏,服用过量可引起中毒。
服用维生素C能预防心脏病。医生建议,每天摄取大约75毫克维生素C,就能满足身体的需要。如果过量服用有可能导致维生素B12缺乏、腹泻、牙龈出血,甚至加速肾结石形成以及造成心脏循环系统方面的疾病。这是美国哈佛大学的一项研究得出的结论。研究还发现,大量维生素C可降低血中含铜量,减少血球的数量;孕妇补充过量,胎儿出生后易患坏血病。
男子缺乏维生素E会减少精子生成,进而导致不育。但最新的研究结果表明,维生素E对增强性能力并不起作用,如过量服用会出现头痛、晕眩、恶心、腹痛、腹泻、口腔炎、抑郁等症状,不利身心健康。
服用维生素A和β-胡萝卜素过量患肺癌的比例比没有服用维生素的人相对高。
人体需要维生素D每天最大剂量为0005毫克。如果过量服用维生素D,可造成高钙血症,使肾脏、血管、支气管甚至眼角膜、巩膜上有钙的沉着,影响这些组织器官的生理功能活动,尤其会加速动脉硬化;严重超量则中毒致死。
综上所述,可见人们不要把维生素当做灵丹妙药盲目过量服用,需要补充时宜在医生指导下服用。
维生素宜在饭后服
在人们心目中,维生素类药物都是“补品”,是蔬菜、水果的“
代用品”,副作用少、安全性大,因此,不少人吃维生素类药犹如吃
蔬菜、水果,非常随便,有时饭前吃,有时饭后服,没有规律。多数
医师也不明确告诉患者,维生素到底应在饭前服还是在饭后服。而多
数维生素类药生产厂家在瓶签上也只标有用法与用量,没有标明注意
事项,亦无饭前服还是饭后服的说明。
其实,服用维生素类药和用其他药一样,也有一定的规定、要求
和注意事项,那就是饭后服。因维生素类药口服后主要由小肠吸收,
若在饭前服用,因胃肠道没有食物,空腹服时药物被迅速吸收入血,
致使维生素在血液中的浓度增高,尚未被人体利用之前即经过肾脏通
过尿道排出体外,使药效明显降低。
如维生素B1、B2和B6空腹服利用率减少,而饭后服吸收率稳定,
吸收率随给药量上升而直线上升。这是由于进食后使胃内容物排出速
度减慢,使药物被缓慢运送到小肠上部,避免了吸收机制中的饱和现
象。
辅酶维B12与维生素C二药饭后服更利于吸收,但二药不能同时服,
若同时服可使B12的生物利用度降低,药效大减。为避免B12缺乏,两
者应相隔2~3小时服用。
同样,口服维生素D2亦宜饭后服,最好先吃一些油脂性食品(如
油条、猪肉等),以利于该药的溶解、吸收。若用于治疗婴儿手足搐
搦症,应首先补充钙剂。
维生素AD(鱼肝油丸)、维生素E及维生素PP(烟酸、尼克酸)
也应于饭后服。AD丸适宜于饭后15分钟服,并进食油脂性食物,以助
吸收。因维生素PP的副作用有皮肤潮红、瘙痒、灼热,甚至出现心悸、
荨麻疹、恶心、呕吐等,饭后服可使副作用明显减轻。为避免长期和
大剂量服用本品对胃肠道的刺激反应,故应在饭后服。
操作电脑与眼睛保健
随着电脑的普及,操作电脑几乎是现代人生活中不可缺少的一
部分。有许多人由于工作的需要,必须整天注视电脑荧光屏,这样
时间长了,就很容易视觉疲劳,甚至诱发其它一些眼病,如青光眼
等。因此,经常操作电脑的人应注意眼保健。
那么,经常操作电脑的人应该怎样进行眼保健呢?一般认为要
注意以下几点:
(1)避免长时间连续操作电脑,注意中间休息。通常连续操
作1小时,休息5~10分钟。休息时可以看远处或做眼保健操。
(2)保持良好的工作姿势。保持一个最适当的姿势,使双眼
平视或轻度向下注视荧光屏,这样可使颈部肌肉轻松,并使眼球暴
露于空气中的面积减小到最低。
(3)保持适当的工作距离。眼睛和电脑荧光屏的距离要保持
在60厘米以上。
(4)创造并保持良好的工作条件。周围环境的光线要柔和,
电脑荧光屏的亮度要适当,清晰度要好,桌椅的高度要和电脑的高
度匹配。
(5)如果出现眼睛干涩、发红,有灼热或有异物感,眼皮沉
重,看东西模糊,甚至出现眼球胀痛或头痛,休息后仍无明显好转
,那就需要到医院看眼科医生了。
好运
欢迎分享,转载请注明来源:品搜搜测评网