如下:
-3x的2次-2x+(-1)
-3x的2次-2x-(-1)
-3x的2次+2x+(-1)
-3x的2次+2x-(-1)
3x的2次-2x+(-1)
3x的2次-2x-(-1)
3x的2次+2x+(-1)
3x的2次+2x-(-1)
找规律的方法:
1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2、斐波那契数列法:每个数都是前两个数的和。
3、等差数列法:每两个数之间的差都相等。
4、跳格子法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8。
第6课 数的开方与二次根式
〖知识点〗
平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、
同类二次根式、二次根式运算、分母有理化
〖大纲要求〗
1理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);
2了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;
3掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
内容分析
1.二次根式的有关概念
(1)二次根式
式子 叫做二次根式.注意被开方数只能是正数或O.
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
(3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质
3.二次根式的运算
(1)二次根式的加减
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.
(2)三次根式的乘法
二次根式相乘,等于各个因式的被开方数的积的算术平方根,即
二次根式的和相乘,可参照多项式的乘法进行.
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
(3)二次根式的除法
二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.
〖考查重点与常见题型〗
1考查平方根、算术平方根、立方根的概念。有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。
2考查最简二次根式、同类二次根式概念。有关习题经常出现在选择题中。
3考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。
参考资料:
含有等号的式子叫做等式。等式可分为矛盾等式和条件等式。等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,或是等式左右两边同时乘方,等式仍然成立。形式是把相等的两个数(或字母表示的数)用“=”连接起来。
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。
目录
一分钟了解等式
144万 57"
等式的性质视频讲解
23万 3'51"
初一数学《一元一次方程》综合培优,分类全面,综合性强
11万 19'28"
七年级数学等式性质讲解,一线老师总结考试重点,家长转发给孩子
1万 5'42"
如何利用等式性质解决简单方程?数学老师讲解方法,还有例题解析
5386 10'25"
>
等式 [děng shì]
科普中国 | 本词条由“科普中国”科学百科词条编写与应用工作项目审核
审阅专家肖志勇
含有等号的式子叫做等式。等式可分为矛盾等式和条件等式。等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,或是等式左右两边同时乘方,等式仍然成立。形式是把相等的两个数(或字母表示的数)用“=”连接起来。
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。
中文名
等式
外文名
equation
定义
含有等号的式子
性质1
若a=b那么a+c=b+c
性质2
若a=b那么a·c=b·c
快速
导航
基本性质
拓展性质
意义
恒等式
不等式
例题
定义
把相等的式子(至少两个)通过等号连接形成的新式子叫做等式。
形式:把相等的式子(或字母表示的数)通过“=”连接起来。
等式分为含有未知数的等式和不含未知数的等式。
例如:
x+1=3——含有未知数的等式;
2+1=3——不含未知数的等式。
需要注意的是,个别含有未知数的等式无解,但仍是等式,例如:x+1=x——x无解。
有8种可能,分别如下:
3x²-2x+(-1)=3x²-2x-1;
3x²+2x+(-1)=3x²+2x-1;
3x²-2x-(-1)=3x²-2x+1;
3x²+2x-(-1)=3x²+2x+1;
-3x²-2x+(-1)=-3x²-2x-1;
-3x²+2x+(-1)=-3x²+2x-1;
-3x²-2x-(-1)=-3x²-2x+1;
-3x²+2x-(-1)=-3x²+2x+1。
性质:
数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。
单项式中的数字因数叫做这个单项式的系数(Coefficient),一个单项式中,所有字母的指数的和叫做这个单项式的次数(Degree of a monomial)。单项式是几次,就叫做几次单项式。
任意一个字母和数字的积的形式是单项式。(除法中有:除以一个数等于乘这个数的倒数)。
单独一个字母或数字也叫单项式。0也是数字,也属于单项式。如果一个单项式,只含有数字因数,那么它的次数为0。
欢迎分享,转载请注明来源:品搜搜测评网