1、loge(x)=ln(x);lg(x)=log10(x)。log函数的性质如果a(a0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。
2、四则运算法则log(AB)=logA+logB;log(A/B)=logA-logB;logN^x=xlogN。换底公式logM/N=logM/logN。换底公式导出logM/N=-logN/M。对数恒等式a^(logM)=M。
3、比如说log24=2,意思是2^x=4,x=2。
4、两对数相乘无法利用对数的运算性质求解,因此在解决此类问题时,要根据所给的关系式认真分析其结构特点,主要有三种处理方法:利用换底公式;整体考虑;化各对数为和差的形式。
log对数函数基本公式是y=logax(a>0 & a≠1)。
对数函数(Logarithmic Function)是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫作以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫作对数的底数,N叫作真数。
一般地,函数y=logax(a>0,且a≠1)叫作对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y因此指数函数里对于a的规定,同样适用于对数函数
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
对数的定义
如果,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
2称以无理数e(e=271828)为底的对数称为自然对数(natural logarithm),并记为ln。
3零没有对数。
4在实数范围内,负数无对数。[3] 在复数范围内,负数是有对数的。
事实上,当,,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。
对数的运算性质
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由幂的对数的运算性质可得(推导公式)
1log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5log(a)b×log(b)c×log(c)a=1
扩展资料:
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a)[M^(1/n)]=log(a)(M)/n
扩展资料:
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
有理和无理指数
如果 是正整数, 表示等于 的 个因子的加减:
但是,如果是 不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。
对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。
复对数
复对数计算公式
复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。
当a>0且a≠1时,m>0,n>0,那么:
log(a)(mn)=log(a)(m)+log(a)(n)
log(a)(m/n)=log(a)(m)-log(a)(n)
log(a)(m^n)=nlog(a)(m) (n∈r)
换底公式:log(a)m=log(b)m/log(b)a (b>0且b≠1)
a^(log(b)n)=n^(log(b)a)
在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越大,函数值越小。(0<a<1时)
扩展资料:
对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),因此对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
欢迎分享,转载请注明来源:品搜搜测评网