表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
2组成:分子结构具有两亲性
非极性烃链: 8个碳原子以上烃链
极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。
3吸附性:
溶液中的正吸附:增加润湿性、乳化性、起泡性
固体表面的吸附:非极性固体表面单层吸附,
极性固体表面可发生多层吸附
[编辑本段]表面活性剂的分类
表面活性剂的分类方法很多,
根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;
根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;
有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。
按极性基团的解离性质分类
1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠
2、阳离子表面活性剂:季铵化物
3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型
4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温)
阴离子表面活性剂
1、肥皂类
系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。
碱金属皂:O/W
碱土金属皂:W/O
有机胺皂:三乙醇胺皂
2、硫酸化物 RO-SO3-M
主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。
硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。
高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠)
乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。
3、磺酸化物 R-SO3 - M
属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。
常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠
阳离子表面活性剂
该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。
常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。
两性离子表面活性剂
这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。
1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料
2、氨基酸型和甜菜碱型:
氨基酸型:R-NH+2-CH2CH2COO-
甜菜碱型:R-N+(CH3)2-COO—。
在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。
非离子表面活性剂
1脂肪酸甘油酯: 单硬脂酸甘油酯;
HLB为3~4,主要用作W/O型乳剂辅助乳化剂。
2多元醇
蔗糖酯:HLB(5~13)O/W乳化剂、分散剂
脂肪酸山梨坦(Span) :W/O乳化剂
聚山梨酯(Tween) : O/W乳化剂
3聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯)
4聚氧乙烯-聚氧丙烯共聚物: Poloxamer
能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂
[编辑本段]表面活性剂的基本性质
1临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。
2亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。
混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb)
理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7
表面活性剂的基本性质
3、增溶作用
1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加
非洛地平-----0025%吐温-----10倍
(表)亲水基团---亲油基团,
(药)极性基团---非极性基团
�8�9cmc,“表”的量�8�0,胶束�8�0,增溶量�8�0,最大增溶浓度(MAC)
[编辑本段]表面活性剂的应用
1增溶:C>CMC ( HLB13~18)
增溶体系为热力学平衡体系
CMC越低、缔合数越大,增溶量(MAC)就越高
温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度
Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小
昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。
2乳化:
HLB:3-8 W /O型乳化剂:Tween;一价皂
HLB:8-16 O/W型乳化剂:Span;二价皂
3润湿:(HLB:7-9)
4助悬:
5起炮和消泡
6消毒、杀菌
7去污剂
[编辑本段]表面活性剂的结构
传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。
无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic
structure),表面活性剂分子因而也常被称作“双亲分子”。
根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。
[编辑本段]表面活性剂的历史发展
表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增14培,这是一个令人鼓舞的数字。
中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增47倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到655万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。
表面活性剂的化学结构与性能的关系
1.亲疏平衡值与性能之间的关系
H·L·B值:表示表面活性剂的亲水疏水性能
(Hydrophile-Lipophile Balance)
表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。
石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水)
对阴离子表面活性剂,可通过乳化标准油来确定HLB值。
HLB值 15~18 13~15 8~8 7~9 35~6 15~3
用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂
HLB值可作为选用表面活性剂的参考依据。
3. 疏水基种类与性能
疏水基按应用分四种
(1) 脂肪烃:
(2) 芳烃:
(3) 混合烃:
(4) 带有弱亲水性基
(5) 其他:全氟烃基
疏水性大小:(5)>(1)>(3)>(2)>(4)
3.亲水基的位置与性能
末端:净洗作用强,润湿性差;中间:相反。
4.分子量与性能
HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差;
分子量大,润湿作用差,去污力好。
5.浊点
对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。
当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。
1 国内外发展概况
聚甘油酯是近二、三十年发展起来的新型乳化剂。它的用途极为广泛,而且不断有新的用途在研究和开发中。早在20世纪40年代,欧美等国就开始生产聚甘油脂,但由于当时产品的质量(如色泽、味道、气味等)不佳,致使在食品领域的推广应用受到极大限制。聚甘油酯作为食品添加剂出现在欧美市场大约是1960年,日本1965年开始研究开发聚甘油酯[1],特别在80年代,日本许多公司相继对这种新型乳化剂的应用进行开发,并已获得许多专利。近些年来,聚甘油酯以食品工业为主要应用对象正逐步扩大到日化、医药、纺织等工业部门。联合国粮食及农业组织(FAO)与世界卫生组织(WHO)确认聚甘油酯为高安全性的食品添加剂,目前FAO/WHO食品添加剂专家委员会公布使用的30多种食品乳化剂中就有聚甘油酯。美国、日本、欧洲已批准聚甘油酯作为食品乳化剂。
我国聚甘油酯的开发和应用起步比较晚,直到80年代中期才偶尔见到关于聚甘油酯方面简单的报道。近些年来,我国在这方面的研究开发和应用取得了可喜成果,并已步入工业化生产[2]。作为甘油脂肪酸酯系列产品中的聚甘油酯,其乳化性能比脂肪酸单甘酯优越得多,原因就在于聚甘油酯中有更多的亲水性羟基。通过适当选择脂肪酸的种类,控制聚甘油的聚合度以及酯化度,可以得到从亲油性到亲水性的各种聚甘油酯产品。我国也已批准使用并颁布了食品添加剂三聚甘油单硬酯酸脂的国家标准。聚甘油酯按照国际食品规格分为聚甘油脂肪酸酯(PGFE)和聚甘油缩合蓖麻醇酸酯(PGPR)。在这里我们主要讨论聚甘油脂肪酸酯。
2 物理化学性质
聚甘油脂肪酸酯(polyglycerol esters of fatty acids,简称聚甘油酯,PGFE)是由多种脂肪酸与不同聚合度的聚甘油反应制成的一类优良的非离子型表面活性剂,其有两亲分子结构,亲油的脂肪酸基团和亲水的聚甘油基团。聚甘油酯一般为固体、半固体或稠状液;色泽变化范围大,为白色到米**或褐色;呈油脂味到微甜味;在加热时可分散于水中,溶于甘油,且溶于其他物质;水解敏感性小,具有较强的热稳定性,抗酸。食品级甘油酯的HLB值范围大约为2-16,可任意调整[3]。
3 聚甘油酯的特性
聚甘油酯是由聚甘油和脂肪酸直接进行酯化反应或与动植物油脂进行酯交换反应而制
成的,结构如下:
n=0、1、2、3…… R=H或脂肪酸残基
所用的脂肪酸可以是硬脂酸、软酯酸、油酸、月桂酸等高级脂肪酸,也可以是低级脂肪酸。聚甘油的聚合度越高、脂肪酸链越短、酯化度越低,聚甘油酯亲水性越强。通过设计不同的甘油聚合度,有目的地控制聚甘油酯分子中的亲水性羟基和亲油性脂肪酸残基之比,就可以得到不同HLB值的产品。[4]作为乳化剂,其中的亲水基团和亲油基团相互作用,相互影响,相互制约。可用Griffin提出的HLB值(亲水亲油平衡值)来表示,HLB值的大小决定了它们的功能和作用。一般来说,当HLB值≤6时,适用于作油包水型(W/O)乳化剂;当HLB值≥7时,适用于作水包油型(O/W)乳化剂。聚甘油酯的耐热性、粘度比其它多元醇系脂肪酸酯高,其水溶液不会因酸或盐的存在而发生凝聚作用,耐水解性能好。相关的界面活性[5](包括界面张力、起泡力、渗透性、乳化性、增溶性、分散性、溶解性等)均有文献报道
注:日本太阳化学公司提供
4 应用
41 聚甘油酯在食品工业中的应用
食品添加剂有好多种,有乳化剂、发泡剂、增稠剂等,每一种食品几乎都是由各种成分组成的,而这些成分的性能往往各异。一个好食品需要将这些组分混合均匀,但由于性质不同有时很难靠机械方法来达到目的,乳化剂就具有这种性能,如冰激凌、巧克力、人造奶油等,如果没有乳化剂就不能达到合格产品。同时添加了乳化剂后还能改善食品的外观、组织结构、口感、提高食品的抗老化性等。下面分别介绍:
411 乳化作用
聚甘油酯作为食品乳化剂用量最大,应用范围也最广。日本的聚甘油酯有80%是用作乳化剂的[7]。聚甘油酯可用作水包油型(O/W)、油包水型(W/O)或双重乳化型(W/O 或O/W)乳液的乳化剂。①水包油型乳化剂:亲水型聚甘油酯在中性范围内的乳化性能与高HLB值的蔗糖酯大约相同或略差,但随着酸性的增加,聚甘油酯的乳化性能则越来越好,当pH值在35~50时,其乳化性和稳定性特别好。蔗糖酯的水溶液因随酸或盐的作用会发生凝聚作用或出现沉淀现象,而聚甘油酯即使在pH值很小时也不会产生这些现象。具有耐酸性的脂肪酸单甘酯存在耐盐性差的特点,而聚甘油酯适合于含酸或盐的食品中作乳化剂。②油包水型乳化剂:对油相较多的体系具有很好的乳化能力,聚甘油缩合蓖麻醇酸酯(PGPR),(由蓖麻油脂肪酸经热缩合后再与聚甘油反应得到的一类亲油性乳化剂,其HLB值<3)。对含水量较多的体系(水分在50~80%)也可进行乳化,并且不受乳化温度的影响,从而制造出性能稳定、耐热性好、粘度低的产品。③双重乳液:有W/O/W型乳液和O/W/O型乳液两种。双重乳化技术的应用已经引起人们的重视,特别是W/O/W的乳化技术在食品领域中的商品化,如用于低热量、低脂肪类食品的制造。
412 结晶调整作用
聚甘油酯具有促进结晶形成和抑制结晶形成的双重作用。亲水性的聚甘油酯具有促进晶体形成的作用,如低酯化度的六聚甘油五硬脂酸酯,而亲油性的聚甘油酯具有抑制结晶的作用,如高酯化度的十聚甘油十硬脂酸酯。通过调整聚甘油酯的酯化度,不必改变油脂的特性就可以调节结晶速度,并可改善油脂的质量,使晶粒细微、具有光泽。
413 粘度调节作用
巧克力是由可可粉、可可脂、蔗糖、奶粉等制成的,粘度调节剂可改善这些成分的分散性,。虽然增加可可脂的配比可以使粘度降低,但生产成本增高。添加低成本的卵磷脂,但效果欠佳,亲油性的PGPR降低粘度的能力优于卵磷脂和蔗糖酯。使巧克力形成平滑的组织结构,减小油脂与蔗糖间的摩擦力,从而使粘度降低、结晶稳定、防止起霜。如果PGPR与卵磷脂合用,发挥协同作用,则效果更佳。另外,聚甘油酯还具有降低含蛋白质的O/W型乳液粘度的作用。也可用于个人清洁组合物中[8]。
421 洗涤剂
聚甘油酯的去污能力虽然不如聚氧乙烯型表面活性剂,但却优于蔗糖酯。市场上出售的餐具,果蔬用中性洗涤剂,洗后的残留在安全性方面存在问题,而由聚甘油酯组成的洗涤剂洗后即使有残留对人体也是安全的。如亲水性的十聚甘油单月桂酸酯和十聚甘油单肉豆蔻酸酯,由于其无毒且不刺激皮肤与粘膜,所以最适用于作餐具、蔬菜和瓜果洗涤剂,比一般合成洗涤剂安全。
新日本理化株式会社透明皂的配方:将65/35的牛油酸/椰油酸混合物50份,与酒精26份,和甘油8份在60—70oC加热溶解,加入稍过量的氢氧化钠中和、皂化,加入蔗糖17份,水5份和聚甘油单硬脂酸酯1份,搅匀并趁热注模,得浅**透明皂,透明度持久。
德国Solway—Werke公司香波的配方[18]:70%的十二烷基聚氧乙烯磺酸219,二聚甘油单月桂酸酯27,氯化钠15,防腐剂005,香精02,加水至10份制成香波。起泡性好,对皮肤温和无刺激。
日本钟纺株式会社的洗面奶配方:十二烷基聚氧乙烯磺酸钠13,N-椰油酰-N-甲基-丙氨酸钠2,四聚甘油单油酸酯1,1,3-丁二醇1,加水至100份。对皮肤无刺激,具有良好的起泡性和清洁性。
日本花王株式会社卸妆水的配方:具有碳原子数12~18的脂肪酸残基的脂肪酸单甘油酯、具有碳原子数12~18的脂肪酸残基的脂肪酸聚甘油酯、季戊四醇异硬脂甘油醚、具有IOB为075~105的聚烷撑二醇链的液状非离子表面活性剂中的一种以上的非离子表面活性剂;液体油成分;12%重量以下的水,且相对于该组合物100重量份,在添加50重量份的水时,不产生白浊。 本发明提供的卸妆水呈现透明液状的、即使混入水也不会产生清洁能力的降低和外观或使用感变差,具有很好的耐水性。
422 化妆品
由聚甘油酯制成的各种化妆品、浴液、洗发香波等,对人体皮肤和毛发刺激性小、安全性高。它可用乳化剂、稳定剂、保湿剂、分散剂等。聚甘油与蓖麻油、棉子油的脂肪酸和月桂酸及豆蔻酸作用生成的酯,聚甘油甲基葡萄糖双硬脂酸酯,聚甘油异硬脂酸酯, 单和双羟基硬脂酸酯及油酸酯都是良好的W/O乳化剂。聚甘油甲基异丁烯酸酯在抗粉刺和头发定型产品中常被用作凝胶剂, 它亦被用于W/O多相乳液中作稳定剂。
二聚甘油单月桂酸酯是一种卸妆用的无水清洁剂和增白剂的成分。它的单、双油酸酯也有乳化W/O乳液的功能, 其中双油酸酯还被用于由氨基酸凝胶稳定的W/O乳液, 而单油酸酯常用于W/O婴儿霜。二聚甘油单硬脂酸酯和单柠檬酸酯被用于冷霜, 异十八烷基二聚甘油琥珀酸酯可延长手霜护理作用。
三聚甘油与蜂蜡的酯交换产物可用于保湿防晒霜, 而它的双异硬脂酸酯可用于普通W/O乳液, 也有用于眼影和胭脂产品, 可代替唇膏配方中蓖麻油,更有将它用于生产防晒条。三聚甘油双异硬脂酸酯用于W/O型维生素E霜, 能赋予其良好涂展性和润滑性。聚甘油双油酸酯提倡用于婴儿霜、抗水防晒霜和干性皮肤用的护肤品。三聚甘油单月桂酸酯用在护手霜中作辅助乳化剂效果也很好。
四聚甘油单月桂酸酯可用作乳化剂[19],在护肤乳露中已有用量为2%的四聚甘油油酸酯。它的亚油酸酯是水溶性的表面活性剂, 与三聚甘油油酸酯复配可使后者能溶于水, 从而提高制品使用感。
五聚甘油双硬脂酸酯有适度的亲水亲油平衡值(HLB=7) , 在化妆品中是一种多功能的乳化剂。六聚甘油单油酸酯与矿油混合是呈透明状的, 涂抹在皮肤上易于被水冲洗掉, 因此非常适用于重油的基础化妆品和美容化妆品。
十聚甘油双油酸酯能产生稳定的W/O乳液, 它的四油酸酯在化妆品生产中亦是很有用的乳化剂。十聚甘油六油酸酯已用于保湿乳露[19]。利用十聚甘油十油酸酯能制得无水美容化妆品, 它亦可用于W/O护肤乳液、防晒油和其它抗水的防晒品。HLB值为7的十聚甘油双软脂酸酯也有多功能乳化剂的性质。十聚甘油单硬脂酸酯由于其良好的滑爽性, 曾被用于保湿手霜和体肤乳露,它与矿油能形成胶体, 因此可降低油腻感和易被清洗掉。十聚甘油三油酸酯还被用于制作自身的乳化蜡。
下面介绍几种国外的专利配方:
Golfiweil A—G公司的护肤液配方[20]:角鲨烷l4,硅油2,脂肪醇3,甘油三酯4,霍霍巴油2,蓝色素0005,UV 吸收剂001份组成油相;水解蛋白04,天然植物提取物1.尿素075,甘油4,1,3-丙二醇35,防腐剂03,三聚甘油单月桂酸酯03,缓冲剂035份组成水相,加水至100份。制得的护肤液为透明两相,色彩分明,摇动即乳化,5-10min又分相。
日本花王株式会社的防晒霜配方:白油4,西蒙德术油3,神经酰胺10,聚甘油蓖麻油酸酯5,氧化镁04.甘油20,尼泊金甲酯01,香精01,加水至100份制得防晒霜。对皮肤刺激性小且贮存稳定。
日本专利护肤霜的配方:磷脂5.角鲨烷5,二聚甘油单硬脂酸酯5,十聚甘油单油酸酯2,山葡醇2,甘油3,1,3一丁二醇4,加水至100份,两相间混合、分散、相容性好。 日本资生堂株式会社的发乳配方:C13-14低粘度白油15,二甲基硅油10,双十八烷基二甲基氯化铵08,二聚甘油二异硬脂酸酯2,糊精酯15,水65,甘油4,PEG05和Smectone12份配成的发乳能滋润头发并使头发有光泽。
日本太阳化学株式会社的一项发明专利[21]中提供了含有聚甘油中链脂肪酸酯的组合物以及含有该组合物的化妆品,该组和物可形成可增溶大量水的油包水型微乳液,并且在水中的分散性和自乳化性也优异。是碳原子数为6-10的中链脂肪酸和平均聚合度为≥3、<100的聚甘油酯化而得到的聚甘油中链脂肪酸酯和非离子表面活性剂。
以甘油为单体可衍生出多种多样的精细化工产品, 国外的专利虽然很多,但从我国目前状况而论, 甘油品种单一, 它的衍生物更是屈指可数, 产品质量也有问题(除分子蒸馏的产品外) , 所以很不适应化妆品工业发展的需要。[19]我国生产一些中高档化妆品用的原料都要依赖进口。对此, 有待于我们积极开拓, 逐步消除这种落后现象。
43 聚甘油酯在其他方面的应用
431 医药工业
由于聚甘油酯具有良好的安全性、耐酸性、耐水解性和药理物质的相容性等特点,在医药工业中可用作乳化剂、增溶剂、分散剂和渗透剂。可以用作软膏、拴剂、散剂、片剂、针剂等的助剂。如硬脂酸系聚甘油酯具有调节粉末药剂的溶解能力[22],棕榈酸系和亚油酸系聚甘油酯对青光眼、便秘、抑制颠痫、降低血中胆固醇等均有疗效。
日本大冢制药株式会社有项发明专利中提供茶碱持续释放颗粒[23],尤其是包含脂肪酸聚甘油酯作为基质的茶碱持续释放颗粒,具有均匀的核心颗粒结构,可有效掩盖药物的不愉快味道,并且具有控制药物释放(溶出)的优异性能和高贮存稳定性。制备方法:加热含有脂肪酸聚甘油酯的基质、茶碱和乙基纤维素,以得到液体混合物;喷雾冷却液体混合物得到平均粒径为250μm或更小的球状核心颗粒;然后用微粉末等熔融包覆核心颗粒。
432 合成树脂与橡胶加工
利用聚甘油酯优良的耐热性能,大分子的聚甘油酯与PVC相容性极好,可以作聚氯乙烯(PVC)或聚烯烃(EVA、PE)等树脂的增塑剂、稳定剂、润滑剂、抗静电剂、防滴剂。如聚甘油酯对EVA、PE等树脂具有防雾性能。在混合型中,油酸系聚甘油酯具有初期防雾作用,硬脂酸系聚甘油酯具有长期防雾作用;在涂敷型中,月桂酸系聚甘油酯的防雾性比较强。聚甘油酯作为防滴剂的主要成分用于PVC无滴农用膜的生产,无滴专用农用膜具有良好的透光性、防雾性。100份PE树脂中加入1份二聚甘油单硬脂酸酯,吹制的薄膜就具有很好的防雾性口,和Span 20、甘油单硬脂酸酯并用,可使PE-EVA薄膜初始及长久防雾性都好 ,若再辅以二氧化硅及含氟表面活性剂,其长久防雾性更佳。聚甘油酯还可作PVC或苯乙烯树脂的乳化聚合用乳化剂,以及天然橡胶与合成橡胶(如丁苯橡胶)的改良剂。
433 石油工业
用于润滑油、合成油等的油品加工。聚甘油酯可以提高纳米微粒在润滑油中的分散稳定性和化学稳定性。陈燕[24]等人利用聚甘油酯作为分散剂,将未进行表面改性的铜纳米颗粒在润滑油中分散,并通过改变聚甘油的聚合度n和脂肪酸与聚甘油之间质量比来调整聚甘油酯的疏水性能及其分散效果,收到了很好的效果。
有项发明专利中涉及一种灌装蜡烛及其制备工艺[25],各组份重量百分比为:水5~25%,甘油或山梨醇10~35%,工业酒精或甲醇20~69%,单甘酯10~59%,聚甘油酯1~5%,还可加入油脂1~49%;先将水,甘油或山梨醇,工业酒精或甲醇混合,加热至70~75度,再将单甘酯,聚甘油酯,油脂,投入其中加热至70~75度溶解,然后搅拌乳化,中和至pH值中性,最后冷却至35~45度时灌装在放有蜡芯的玻璃杯或其他容器中。本发明产品燃烧时无烟无毒无味,是一种替代石油产品的新的蜡烛材料。
434 轻工纺织
聚甘油酯可用作纤维柔软剂、织物匀染剂、抗静电剂,以增加织物的润滑性和柔软性,并具有耐热、润滑等性能。壬基酚三聚甘油醚是蜡的优良乳化剂.可将巴西棕榈蜡乳化成99nm 粒径的微乳液,用于配制发乳及皮革上光剂。
435 农用化学品
作为农药杀虫剂的分散剂、乳化剂,土壤稳定剂等。浙江省粮食科学研究所[26]在国内首次利用浸出菜油进行改性成聚甘油酯后与烯烃类树脂再度聚合而成的新型防腐涂料油,具有优良的干结成膜性能,可代替桐油、梓油,防腐性能好。农用合成防腐油按照化工部部颁方法测定,质量相当于桐、梓油,某些指标优于桐梓油,具有桐梓油相类似的性能,而光泽度好。浙江省因桐油难于满足需要,而农民习惯使用桐、梓油涂抹木制农具、木船、房舍,因此迫切需要解决涂料资源。浙江省菜油资源丰富,浸出菜油与石油化工副产品试制农用合成防腐油可代替桐、梓油作涂料。如全省生产1500吨,可获利45万元。
5 聚甘油酯的合成
聚甘油脂的合成方法是将聚甘油和脂肪酸直接进行酯化或与动植物油脂进行酯交换反应。主要分为两部分:聚甘油的合成(即甘油的聚合反应)和聚甘油与脂肪酸的酯化反应。
聚甘油的合成主要有碱法,蒸馏甘油残渣,等几种方法,得到的甘油要进行精制,[30]然后用离子交换树脂进一步纯化,以除去未反应物、催化剂和其它杂质等。然后进行酯化,最后对产物进行脱色、脱臭、除去催化剂等。
6 应用前景
我国食品添加剂目前正处于开发应用阶段,新品种不断出现,应用领域逐步扩大,但在品种和质量上与世界先进水平都存在着很大的差距。近年来随着人民生活水平的不断提高,新型食品的开发和新型加工工艺的引入,对食品添加剂的发展起着积极的推动作用。由于我国甘油资源及其紧张,使聚甘油酯的开发、生产和应用受到原料短缺的影响和制约,在我国仅有少数几个单位进行研究。可喜的是国家仍投入资金和力量给予支持,现在我国自行研制生产的聚甘油酯已步入商品化。特别需要指出的是,随着生物技术的发展和进步,发酵法生产甘油技术正趋于成熟,可大大缓解我国甘油资源紧张的局面,为聚甘油酯开发和生产奠定良好的基础。根据我国国情,应研究开发具有优良功能以及其他食品添加剂无法取代的具有独特性能的聚甘油酯品种,如PGPR等。这样既能节约极为短缺的甘油资源,又能满足食品行业及其它领域的需求,相信聚甘油酯定会在食品添加剂的大家族中发挥应有的作用。同时应大力加强食品添加剂复配技术的应用研究,这是一个极为引人注目的研究领域。食品乳化剂不外乎几十个品种,但由它们复配起来针对市场需求的品种可不计其数,如日本以甘油酯和蔗糖酯为主的复配型乳化剂就达数百种之多。食品乳化剂的种类是有限和相对稳定的,但新型食品和高新食品加工工艺却层出不穷,及时研制开发各种专用食品乳化剂,特别是专用复配型乳化剂,是推动我国食品工业飞速发展和尽快步入世界先进水平的关键。
在我们的现实生活中,我们经常会看到地沟油在哪里,食物问题在哪里等等。即使是我们平时使用的香水,实际上也含有一定的毒素。 毒素实际上可以改变我们的基因。
一、香水含有多少中毒素
1科学家以413种对人体有害的化学物质为检测对象,采集新生儿的脐带血进行检测,发现平均有287种,这意味着这些化学物质是直接从母体传来的 对新生儿来说,所以如果说现代的孩子更容易患自闭症、多动症、过敏等疾病,原因其实很明显。 然而,人在出生后,也受到饮食损害和环境毒素的极大影响,我们的基因DNA始终受到威胁。
2 在饮食方面,最会杀死你的饮食就是让你发炎的饮食:劣质的食用油、高糖或高脂肪的食物会使身体处于不断发炎的状态,产生大量 自由基破坏身体细胞和基因。 高盐食物会阻碍身体排除毒素。 很多食品添加剂都是化学物质,虽然大部分都是合法的,但我们其实不知道吃久了好不好,而且吃得最多的不是你我这样的大人,而是孩子 在家吃零食。 相当于让他们的基因从很小的时候就因为外界物质的影响而衰退。
3我们的环境中有很多环境毒素,如壬基酚等环境激素,铅、镉等重金属等。 采矿和工业是环境污染的两大来源,但我们的家庭环境并不安全。 以擦在身上的化妆品和护肤品为例,其中很多都含有致病毒素。 据调查,口红含有33种毒素、32种乳液、31种指甲油、26种眼影、22种防晒产品,但最夸张的是香水,含有250种毒素。
二、人类基因很容易通过不断暴露于外部刺激而改变
我们的身体每天都接触到各种毒素,尤其是人类有23对染色体,突变的几率比只有3对染色体的蚊子要大得多。
1在正常情况下,基因的遗传信息是通过细胞分裂和再生等一系列过程传递的。 如果中间有一些变化与原来的不同,可以通过修改过程来纠正。 但如果外界的负面因素反复给出错误的刺激信号,细胞就会像“三人成虎”一样接受外界的错误信息,基因就会发生变异。
2 值得注意的是,95%的DNA成分是蛋白质,所以我们从食物中摄取的蛋白质,以及同样是蛋白质结构的病毒,通过不同的方式改变了人类的基因组成。 如果我们吃的蛋白质与自己的DNA结构接近,人体很容易吸收,但也可能同时吸收这些蛋白质所附着的疾病因子; 有的病毒通过这种方式进入人体,但一时不起作用。 当人变老后,病毒会产生“逆转录病毒行为”,改变人体DNA,进而引发癌症,如肝癌、宫颈癌、鼻咽癌等。 此外,虽然细胞膜一般可以抵御外界的攻击,保护细胞核中存在的DNA,但更麻烦的是,细胞内的能量工厂“线粒体”并不那么强大,更容易受到游离的影响。 激进的攻击,导致突变后,可能会影响身体的原始DNA。
三、香水的具体危害
1诱发哮喘
一些数据显示,仅在美国就有多达 75%(约 900 万患者)的哮喘是由香水引起的,尤其是婴儿和幼儿。
2、影响记忆
也有报道称,在密闭空间内长期使用来历不明的熏香剂也会影响脑组织,并可能导致记忆力减退。 可见,香水也与记忆息息相关。
3香水的化学成分也通过血液起作用
当香味从口、鼻、皮肤被人体吸收,通过血液到达全身各处时,体质敏感的人容易出现头痛、打喷嚏、流泪、头晕、胸闷等症状。
4 香味中添加了檀香味的芳樟醇
还会引起抑郁、抑郁,甚至影响呼吸系统。 所以在使用的时候要小心!
在老人居住的地方,有一种奇特的气味,难以确定,但一般来说是令人不快的。有些人称其为 "老味"。有些人认为这是老年人运动能力下降,不够干净造成的。但事实上,这是老年人不可避免的气味,几十年后,我们都会有这样的气味。
为什么人们随着年龄的增长,味道会有所不同?
老年的味道 "实际上是一种叫做壬烯醛的化学物质的味道。壬烯醛是一种由皮肤中的欧米茄-7不饱和脂肪酸氧化降解产生的化学物质,年轻时身体制造的壬烯醛较少。
无论是男性还是女性,在40岁左右,皮肤开始产生更多的脂肪酸,皮肤的天然抗氧化屏障开始恶化,导致壬烯醛水平上升,味道变得明显。激素水平的重大变化,如女性更年期,也会促进这一化学过程。因此,你越老,表面产生的壬烯醛越多,气味就越明显。壬烯醛不溶于水,所以即使你洗得很干净,它也会留在你的皮肤上。因此,即使环境很干净,个人卫生也很完美,气味仍然留在皮肤和纤维上,让我们闻到老人家里和衣服的味道。
我们如何才能摆脱 "老味道 "呢?
淳于骏的长辈曾为老味感到苦恼,那如何才能摆脱这种味道呢?其实追求完全净化是没有必要的,但自己闻起来不舒服,想脱盐,还是有一些方法的。
哪些方法值得一试呢?
健康的生活方式可以将壬基酚水平降到最低,包括经常锻炼、减少压力、戒烟、限制饮酒、吃健康干净的饮食、喝足够的水和得到足够的休息。
日常清洁用品,如肥皂和沐浴露,可能含有除臭剂,可以减少或掩盖难闻的气味,但这些成分并不能有效地去除或中和非烯烃气味。良好的个人卫生和房间卫生,无论是否有特殊的除臭剂产品,无论是否有100%的非烯烃清除剂,至少可以减少其他不愉快的气味,防止健康问题。甚至定期开窗也可以帮助老人摆脱陈旧的空气,带来新鲜空气。做这些小事对老人来说也变得很困难。在这一点上,年轻一代需要更多的关心,或者聘请家庭护理员帮助照顾老人。
不要对能去除老年气味的产品抱有幻想
市场上已经有声称可以去除老年气味的产品,比如一个日本护肤品品牌声称找到了可以去除壬基酚的植物成分:柿子和绿茶。
该产品声称,柿子中的单宁酸可以降解并洗去壬辰酸,而绿茶中的抗氧化剂有助于皮肤排毒,并增加除臭效果。该公司的产品包括香皂、沐浴露甚至织物喷雾剂。
但实际上,净化效果不优于其他洗护的东西肯定是有的,可以尝试使用,但不必抱太大的希望。进口日化产品的价格也普遍偏高,视情况而定。总之,所谓的 "老年味 "是衰老过程中不可避免的自然现象,我们要让长辈们不觉得羞耻,更不要抱怨家里有老人的味道。
作为晚辈,我们能做的是更多地了解和讨论衰老过程中的变化,并帮助老年人获得更好的卫生和更好的护理。
欢迎分享,转载请注明来源:品搜搜测评网